Reduction of Euler-Lagrange equations in gauge theories

被引:1
|
作者
Geyer, B [1 ]
Gitman, D
Tyutin, I
机构
[1] Univ Leipzig, Naturwisensch Theoret Zentrum, Leipzig, Germany
[2] Univ Leipzig, Inst Theoret Phys, Leipzig, Germany
[3] Univ Sao Paulo, Inst Phys, BR-05508 Sao Paulo, Brazil
[4] PN Lebedev Phys Inst, Moscow 117924, Russia
来源
关键词
gauge theories; lagrangian formulation;
D O I
10.1142/S0217751X03015519
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a reduction procedure to the so-called canonical form for the Euler-Lagrange equations of a general gauge theory. The reduction procedure reveals constraints in the Lagrangian formulation of singular theories and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. As a demonstration we apply the reduction procedure to theories without higher derivatives.
引用
收藏
页码:2077 / 2084
页数:8
相关论文
共 50 条
  • [21] On the metrics and Euler-Lagrange equations of computational anatomy
    Miller, MI
    Trouvé, A
    Younes, L
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 : 375 - 405
  • [22] New order reductions for Euler-Lagrange equations
    Muriel, C
    Romero, JL
    SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 236 - 243
  • [23] The Hamiltonian canonical form for Euler-Lagrange equations
    Zheng, Y
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (04) : 385 - 394
  • [24] Generalized Variational Problems and Euler-Lagrange equations
    Agrawal, Om Prakash
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) : 1852 - 1864
  • [25] ON THE NUMERICAL-SOLUTION OF THE EULER-LAGRANGE EQUATIONS
    RABIER, PJ
    RHEINBOLDT, WC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) : 318 - 329
  • [26] AUTOMATIC INTEGRATION OF EULER-LAGRANGE EQUATIONS WITH CONSTRAINTS
    GEAR, CW
    LEIMKUHLER, B
    GUPTA, GK
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1985, 12-3 (MAY) : 77 - 90
  • [27] Variational integrator for fractional Euler-Lagrange equations
    Bourdin, Loic
    Cresson, Jacky
    Greff, Isabelle
    Inizan, Pierre
    APPLIED NUMERICAL MATHEMATICS, 2013, 71 : 14 - 23
  • [28] Fractional Euler-Lagrange equations for constrained systems
    Avkar, T
    Baleanu, D
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 84 - 90
  • [29] ON THE NUMERICAL-SOLUTION OF EULER-LAGRANGE EQUATIONS
    POTRA, FA
    RHEINBOLDT, WC
    MECHANICS OF STRUCTURES AND MACHINES, 1991, 19 (01): : 1 - 18
  • [30] MODELS OF MACHINING WITH ARBITRARY EULER-LAGRANGE EQUATIONS
    JOYOT, P
    RAKOTOMALALA, R
    TOURATIER, M
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C7): : 1141 - 1144