Automatic Gleason grading of prostate cancer using SLIM and machine learning

被引:1
|
作者
Nguyen, Tan H. [1 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Pathol, Chicago, IL 60637 USA
来源
关键词
automatic diagnosis; Quantitative Phase Imaging; spatial light interference microscopy; SLIM; prostate cancer; diagnosis; QUANTITATIVE PHASE MICROSCOPY;
D O I
10.1117/12.2217288
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present an updated automatic diagnostic procedure for prostate cancer using quantitative phase imaging (QPI). In a recent report [1], we demonstrated the use of Random Forest for image segmentation on prostate cores imaged using QPI. Based on these label maps, we developed an algorithm to discriminate between regions with Gleason grade 3 and 4 prostate cancer in prostatectomy tissue. The Area-Under-Curve (AUC) of 0.79 for the Receiver Operating Curve (ROC) can be obtained for Gleason grade 4 detection in a binary classification between Grade 3 and Grade 4. Our dataset includes 280 benign cases and 141 malignant cases. We show that textural features in phase maps have strong diagnostic values since they can be used in combination with the label map to detect presence or absence of basal cells, which is a strong indicator for prostate carcinoma. A support vector machine (SVM) classifier trained on this new feature vector can classify cancer/non-cancer with an error rate of 0.23 and an AUC value of 0.83.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Multifeature prostate cancer diagnosis and Gleason grading of histological images
    Tabesh, Ali
    Teverovskiy, Mikhail
    Pang, Ho-Yuen
    Kumar, Vinay P.
    Verbel, David
    Kotsianti, Angeliki
    Saidi, Olivier
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (10) : 1366 - 1378
  • [42] Prostate cancer lymph node metastases: Gleason grading rules
    Huang, W
    Hofer, MD
    Bismar, TA
    Kuefer, R
    Perner, S
    Gschwend, JE
    Hautmann, RE
    Rubin, MA
    [J]. LABORATORY INVESTIGATION, 2005, 85 : 146A - 146A
  • [43] Automated prostate cancer diagnosis and Gleason grading of tissue microarrays
    Tabesh, A
    Kumar, VP
    Pang, HY
    Verbel, D
    Kotsianti, A
    Teverovskiy, M
    Saidi, O
    [J]. MEDICAL IMAGING 2005: IMAGE PROCESSING, PT 1-3, 2005, 5747 : 58 - 70
  • [44] Automated deep-learning system for Gleason grading of prostate cancer using digital pathology and genomic signatures.
    Van Booven, Derek
    Sandoval, Victor
    Kryvenko, Oleksander
    Parmar, Madhumita
    Briseno, Andres
    Arora, Himanshu
    [J]. CANCER RESEARCH, 2021, 81 (13)
  • [45] A Review on Prediction and Prognosis of the Prostate Cancer and Gleason Grading of Prostatic Carcinoma Using Deep Transfer Learning Based Approaches
    G. Prabu Kanna
    S J K Jagadeesh Kumar
    P. Parthasarathi
    Yogesh Kumar
    [J]. Archives of Computational Methods in Engineering, 2023, 30 (5) : 3113 - 3132
  • [46] Future-proofing Gleason Grading: What to Call Gleason 6 Prostate Cancer?
    Loeb, Stacy
    Montorsi, Francesco
    Catto, James W.
    [J]. EUROPEAN UROLOGY, 2015, 68 (01) : 1 - 2
  • [47] Prediction of Gleason Grade Group of Prostate Cancer on Multiparametric MRI using Deep Machine Learning Models
    Zong, Weiwei
    Lee, Joon
    Pantelic, Milan
    Wen, Ning
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (02): : E9 - E10
  • [48] A Review on Prediction and Prognosis of the Prostate Cancer and Gleason Grading of Prostatic Carcinoma Using Deep Transfer Learning Based Approaches
    Kanna, G. Prabu
    Kumar, S. J. K. Jagadeesh
    Parthasarathi, P.
    Kumar, Yogesh
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 3113 - 3132
  • [49] Author Correction: Automated Gleason grading of prostate cancer tissue microarrays via deep learning
    Eirini Arvaniti
    Kim S. Fricker
    Michael Moret
    Niels Rupp
    Thomas Hermanns
    Christian Fankhauser
    Norbert Wey
    Peter J. Wild
    Jan H. Rüschoff
    Manfred Claassen
    [J]. Scientific Reports, 9
  • [50] Author Correction: Automated Gleason grading of prostate cancer tissue microarrays via deep learning
    Eirini Arvaniti
    Kim S. Fricker
    Michael Moret
    Niels Rupp
    Thomas Hermanns
    Christian Fankhauser
    Norbert Wey
    Peter J. Wild
    Jan H. Rüschoff
    Manfred Claassen
    [J]. Scientific Reports, 11