Automatic Gleason grading of prostate cancer using SLIM and machine learning

被引:1
|
作者
Nguyen, Tan H. [1 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Pathol, Chicago, IL 60637 USA
来源
关键词
automatic diagnosis; Quantitative Phase Imaging; spatial light interference microscopy; SLIM; prostate cancer; diagnosis; QUANTITATIVE PHASE MICROSCOPY;
D O I
10.1117/12.2217288
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present an updated automatic diagnostic procedure for prostate cancer using quantitative phase imaging (QPI). In a recent report [1], we demonstrated the use of Random Forest for image segmentation on prostate cores imaged using QPI. Based on these label maps, we developed an algorithm to discriminate between regions with Gleason grade 3 and 4 prostate cancer in prostatectomy tissue. The Area-Under-Curve (AUC) of 0.79 for the Receiver Operating Curve (ROC) can be obtained for Gleason grade 4 detection in a binary classification between Grade 3 and Grade 4. Our dataset includes 280 benign cases and 141 malignant cases. We show that textural features in phase maps have strong diagnostic values since they can be used in combination with the label map to detect presence or absence of basal cells, which is a strong indicator for prostate carcinoma. A support vector machine (SVM) classifier trained on this new feature vector can classify cancer/non-cancer with an error rate of 0.23 and an AUC value of 0.83.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Automatic Prostate Cancer Grading Using Deep Architectures
    Mohsin, Muhammad
    Shaukat, Arslan
    Akram, Usman
    Zarrar, Muhammad Kaab
    [J]. 2021 IEEE/ACS 18TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2021,
  • [22] Automated Gleason Grading and Gleason Pattern Region Segmentation Based on Deep Learning for Pathological Images of Prostate Cancer
    Li, Yuchun
    Huang, Mengxing
    Zhang, Yu
    Chen, Jing
    Xu, Haixia
    Wang, Gang
    Feng, Wenlong
    [J]. IEEE ACCESS, 2020, 8 : 117714 - 117725
  • [23] Interobserver variability in Gleason histological grading of prostate cancer
    Ozkan, Tayyar A.
    Eruyar, Ahmet T.
    Cebeci, Oguz O.
    Memik, Omur
    Ozcan, Levent
    Kuskonmaz, Ibrahim
    [J]. SCANDINAVIAN JOURNAL OF UROLOGY, 2016, 50 (06) : 420 - 424
  • [24] Texture analysis of tissues in Gleason grading of prostate cancer
    Alexandratou, Eleni
    Yova, Dido
    Gorpas, Dimitris
    Maragos, Petros
    Agrogiannis, George
    Kavantzas, Nikolaos
    [J]. IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES VI, 2008, 6859
  • [25] GLEASON GRADING OF PROSTATE-CANCER - A PREDICTOR OF SURVIVAL
    SOGANI, PC
    ISRAEL, A
    LIEBERMAN, PH
    LESSER, ML
    WHITMORE, WF
    [J]. UROLOGY, 1985, 25 (03) : 223 - 227
  • [26] Prostate Cancer Detection and Gleason Grading of Histological Images using Shearlet Transform
    Rezaeilouyeh, Hadi
    Mahoor, Mohammad H.
    La Rosa, Francisco G.
    Zhang, Jun Jason
    [J]. 2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 268 - 272
  • [27] Hybrid Unified Deep Learning Network for Highly Precise Gleason Grading of Prostate Cancer
    Uthappa, Poojitha P.
    Sharma, Shanker Lal
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 899 - 903
  • [28] Clinically applicable Gleason grading (GD) system for prostate cancer based on deep learning
    Niu, Yun
    Liu, Can-Cheng
    Zhang, Bing-Lin
    Song, Zhi-Gang
    Chen, Huang
    Liu, Ping-Ping
    Chen, Jing-Si
    Wang, Shu-Hao
    Shi, Huai-Yin
    Zhong, Ding-Rong
    [J]. CHINESE MEDICAL JOURNAL, 2021, 134 (07) : 859 - 861
  • [29] Trends in Gleason grading in Germany: Evaluation using prostate cancer tissue microarrays
    Burchardt, M
    Engers, R
    Mueller, M
    Burchardt, T
    Ackermann, R
    Gabbert, HE
    De La Taille, A
    Epstein, JI
    Rubin, MA
    [J]. JOURNAL OF UROLOGY, 2004, 171 (04): : 224 - 224
  • [30] Interobserver reproducibility of Gleason grading: evaluation using prostate cancer tissue microarrays
    M. Burchardt
    R. Engers
    M. Müller
    T. Burchardt
    R. Willers
    J. I. Epstein
    R. Ackermann
    H. E. Gabbert
    A. de la Taille
    M. A. Rubin
    [J]. Journal of Cancer Research and Clinical Oncology, 2008, 134 : 1071 - 1078