Automatic Gleason grading of prostate cancer using SLIM and machine learning

被引:1
|
作者
Nguyen, Tan H. [1 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Pathol, Chicago, IL 60637 USA
来源
关键词
automatic diagnosis; Quantitative Phase Imaging; spatial light interference microscopy; SLIM; prostate cancer; diagnosis; QUANTITATIVE PHASE MICROSCOPY;
D O I
10.1117/12.2217288
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present an updated automatic diagnostic procedure for prostate cancer using quantitative phase imaging (QPI). In a recent report [1], we demonstrated the use of Random Forest for image segmentation on prostate cores imaged using QPI. Based on these label maps, we developed an algorithm to discriminate between regions with Gleason grade 3 and 4 prostate cancer in prostatectomy tissue. The Area-Under-Curve (AUC) of 0.79 for the Receiver Operating Curve (ROC) can be obtained for Gleason grade 4 detection in a binary classification between Grade 3 and Grade 4. Our dataset includes 280 benign cases and 141 malignant cases. We show that textural features in phase maps have strong diagnostic values since they can be used in combination with the label map to detect presence or absence of basal cells, which is a strong indicator for prostate carcinoma. A support vector machine (SVM) classifier trained on this new feature vector can classify cancer/non-cancer with an error rate of 0.23 and an AUC value of 0.83.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Hybrid Unified Deep Learning Network for Highly Precise Gleason Grading of Prostate Cancer
    Uthappa, Poojitha P.
    Sharma, Shanker Lal
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 899 - 903
  • [32] Trends in Gleason grading in Germany: Evaluation using prostate cancer tissue microarrays
    Burchardt, M
    Engers, R
    Mueller, M
    Burchardt, T
    Ackermann, R
    Gabbert, HE
    De La Taille, A
    Epstein, JI
    Rubin, MA
    [J]. JOURNAL OF UROLOGY, 2004, 171 (04): : 224 - 224
  • [33] Prostate Cancer Detection and Gleason Grading of Histological Images using Shearlet Transform
    Rezaeilouyeh, Hadi
    Mahoor, Mohammad H.
    La Rosa, Francisco G.
    Zhang, Jun Jason
    [J]. 2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 268 - 272
  • [34] PCaseek: ultraspecific urinary tumor DNA detection using deep learning for prostate cancer diagnosis and Gleason grading
    Li, Gaojie
    Wang, Ye
    Wang, Ying
    Wang, Baojun
    Liang, Yuan
    Wang, Ping
    He, Yudan
    Hu, Xiaoshan
    Liu, Guojun
    Lei, Zhentao
    Zhang, Bao
    Shi, Yue
    Gao, Xu
    Zhang, Xu
    Ci, Weimin
    [J]. CELL DISCOVERY, 2024, 10 (01)
  • [35] Deep-learning approaches for Gleason grading of prostate biopsies
    Madabhushi, Anant
    Feldman, Michael D.
    Leo, Patrick
    [J]. LANCET ONCOLOGY, 2020, 21 (02): : 187 - 189
  • [36] Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks
    Serbanescu, Mircea-Sebastian
    Manea, Nicolae Catalin
    Streba, Liliana
    Belciug, Smaranda
    Plesea, Iancu Emil
    Pirici, Ionica
    Bungardean, Raluca Maria
    Plesea, Razvan Mihail
    [J]. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 2020, 61 (01): : 149 - 155
  • [37] Prostate Cancer Grading: A Decade After the 2005 Modified Gleason Grading System
    Delahunt, Brett
    Grignon, David J.
    Samaratunga, Hemamali
    Srigley, John R.
    Leite, Katia R. M.
    Kristiansen, Glen
    Evans, Andrew J.
    Kench, James G.
    Egevad, Lars
    [J]. ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2017, 141 (02) : 182 - 183
  • [38] Label Distribution Learning for Automatic Cancer Grading of Histopathological Images of Prostate Cancer
    Nishio, Mizuho
    Matsuo, Hidetoshi
    Kurata, Yasuhisa
    Sugiyama, Osamu
    Fujimoto, Koji
    [J]. CANCERS, 2023, 15 (05)
  • [39] Prostate Cancer Grading A Decade After the 2005 Modified Gleason Grading System
    Kryvenko, Oleksandr N.
    Epstein, Jonathan I.
    [J]. ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2016, 140 (10) : 1140 - 1152
  • [40] Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens
    Nagpal, Kunal
    Foote, Davis
    Tan, Fraser
    Liu, Yun
    Chen, Po-Hsuan Cameron
    Steiner, David F.
    Manoj, Naren
    Olson, Niels
    Smith, Jenny L.
    Mohtashamian, Arash
    Peterson, Brandon
    Amin, Mahul B.
    Evans, Andrew J.
    Sweet, Joan W.
    Cheung, Carol
    van der Kwast, Theodorus
    Sangoi, Ankur R.
    Zhou, Ming
    Allan, Robert
    Humphrey, Peter A.
    Hipp, Jason D.
    Gadepalli, Krishna
    Corrado, Greg S.
    Peng, Lily H.
    Stumpe, Martin C.
    Mermel, Craig H.
    [J]. JAMA ONCOLOGY, 2020, 6 (09) : 1372 - 1380