Automatic Gleason grading of prostate cancer using SLIM and machine learning

被引:1
|
作者
Nguyen, Tan H. [1 ]
Sridharan, Shamira [1 ]
Marcias, Virgilia [3 ]
Balla, Andre K. [3 ]
Do, Minh N. [2 ]
Popescu, Gabriel [1 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Elect & Comp Engn, Quantitat Phase Imaging Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Coordinated Sci Lab, Computat Imaging Grp, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Pathol, Chicago, IL 60637 USA
来源
关键词
automatic diagnosis; Quantitative Phase Imaging; spatial light interference microscopy; SLIM; prostate cancer; diagnosis; QUANTITATIVE PHASE MICROSCOPY;
D O I
10.1117/12.2217288
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we present an updated automatic diagnostic procedure for prostate cancer using quantitative phase imaging (QPI). In a recent report [1], we demonstrated the use of Random Forest for image segmentation on prostate cores imaged using QPI. Based on these label maps, we developed an algorithm to discriminate between regions with Gleason grade 3 and 4 prostate cancer in prostatectomy tissue. The Area-Under-Curve (AUC) of 0.79 for the Receiver Operating Curve (ROC) can be obtained for Gleason grade 4 detection in a binary classification between Grade 3 and Grade 4. Our dataset includes 280 benign cases and 141 malignant cases. We show that textural features in phase maps have strong diagnostic values since they can be used in combination with the label map to detect presence or absence of basal cells, which is a strong indicator for prostate carcinoma. A support vector machine (SVM) classifier trained on this new feature vector can classify cancer/non-cancer with an error rate of 0.23 and an AUC value of 0.83.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning
    Nguyen, Tan H.
    Sridharan, Shamira
    Macias, Virgilia
    Kajdacsy-Balla, Andre
    Melamed, Jonathan
    Do, Minh N.
    Popescu, Gabriel
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (03)
  • [2] Automatic Gleason Grading of Prostate Cancer Using Shearlet Transform and Multiple Kernel Learning
    Rezaeilouyeh, Hadi
    Mahoor, Mohammad H.
    [J]. JOURNAL OF IMAGING, 2016, 2 (03)
  • [3] A Machine Learning Tool to Complement Gleason Grading of Prostate Carcinoma
    Bhele, S.
    Ma, Z.
    Mohanty, S.
    Salman, S.
    Amin, M. B.
    Balzer, B.
    Knudsen, B. S.
    Gertych, A.
    [J]. MODERN PATHOLOGY, 2014, 27 : 217A - 218A
  • [4] A Machine Learning Tool to Complement Gleason Grading of Prostate Carcinoma
    Bhele, S.
    Ma, Z.
    Mohanty, S.
    Salman, S.
    Amin, M. B.
    Balzer, B.
    Knudsen, B. S.
    Gertych, A.
    [J]. LABORATORY INVESTIGATION, 2014, 94 : 217A - 218A
  • [5] Ultrasonographic pathological grading of prostate cancer using automatic region-based Gleason grading network
    Lu, Xu
    Zhang, Shulian
    Liu, Zhiyong
    Liu, Shaopeng
    Huang, Jun
    Kong, Guoquan
    Li, Mingzhu
    Liang, Yinying
    Cui, Yunneng
    Yang, Chuan
    Zhao, Shen
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2022, 102
  • [6] Automatic Gleason Grading of Prostate Cancer using Gabor Filter and Local Binary Patterns
    Farooq, Muhammad Tahir
    Shaukat, Arslan
    Akram, Usman
    Waqas, Omer
    Ahmad, Masood
    [J]. 2017 40TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2017, : 642 - 645
  • [7] AUTOMATED HISTOPATHOLOGIC DIAGNOSIS AND GLEASON GRADING OF PROSTATE BIOPSIES WITH MACHINE LEARNING
    Kott, Ohad
    Linsley, Drew
    Amin, Ali
    Karagounis, Andreas
    Golijanin, Dragan
    Serre, Thomas
    Gershman, Boris
    [J]. JOURNAL OF UROLOGY, 2019, 201 (04): : E215 - E215
  • [8] Automated Gleason Grading of Prostate Biopsies Using Deep Learning
    Bulten, Wouter
    Pinckaers, Hans
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    [J]. MODERN PATHOLOGY, 2019, 32
  • [9] Automated Gleason Grading of Prostate Biopsies Using Deep Learning
    Bulten, Wouter
    Pinckaers, Hans
    Hulsbergen-van de Kaa, Christina
    Litjens, Geert
    [J]. LABORATORY INVESTIGATION, 2019, 99
  • [10] Prostate Cancer: Update on Gleason Grading
    van Leenders, A.
    [J]. JOURNAL OF PATHOLOGY, 2018, 246 : S10 - S10