Unconditional Optimal Error Estimates for the Transient Navier-Stokes Equations with Damping

被引:4
|
作者
Li, Minghao [1 ]
Li, Zhenzhen [2 ]
Shi, Dongyang [3 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词
Navier-Stokes equations with damping; linearized backward Euler scheme; error splitting technique; unconditional optimal error estimates; FINITE-ELEMENT METHODS; MODIFIED CHARACTERISTICS FEMS; NICOLSON GALERKIN FEMS; SUPERCONVERGENCE ANALYSIS; MIXED-FEM; CONVERGENCE; STABILITY; SCHEME; APPROXIMATION; WEAK;
D O I
10.4208/aamm.OA-2020-0239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the transient Navier-Stokes equations with damping are con-sidered. Firstly, the semi-discrete scheme is discussed and optimal error estimates are derived. Secondly, a linearized backward Euler scheme is proposed. By the error split technique, the Stokes operator and the H-1-norm estimate, unconditional optimal er-ror estimates for the velocity in the norms L infinity(L2) and L infinity(H1), and the pressure in the norm L infinity(L2) are deduced. Finally, two numerical examples are provided to confirm the theoretical analysis.
引用
收藏
页码:248 / 274
页数:27
相关论文
共 50 条
  • [21] Error estimates for finite element discretizations of the instationary Navier-Stokes equations
    Vexler, Boris
    Wagner, Jakob
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (02) : 457 - 488
  • [22] ERROR ESTIMATES FOR REDUCED ORDER POD MODELS OF NAVIER-STOKES EQUATIONS
    Ravindran, S. S.
    [J]. IMECE 2008: MECHANICS OF SOLIDS, STRUCTURES AND FLUIDS, VOL 12, 2009, : 651 - 657
  • [23] Semidiscretization and error estimates for distributed control of the instationary Navier-Stokes equations
    Klaus Deckelnick
    Michael Hinze
    [J]. Numerische Mathematik, 2004, 97 : 297 - 320
  • [24] Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations
    Gallouet, Thierry
    Maltese, David
    Novotny, Antonin
    [J]. NUMERISCHE MATHEMATIK, 2019, 141 (02) : 495 - 567
  • [25] A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations
    Saumya Bajpai
    Deepjyoti Goswami
    Kallol Ray
    [J]. Numerical Algorithms, 2023, 94 : 937 - 1002
  • [26] Error Estimates for FEM Discretizations of the Navier-Stokes Equations with Dirac Measures
    Lepe, Felipe
    Otarola, Enrique
    Quero, Daniel
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (03)
  • [27] A POSTERIORI ERROR ESTIMATES FOR THE STATIONARY NAVIER-STOKES EQUATIONS WITH DIRAC MEASURES
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : A1860 - A1884
  • [28] ON THE ERROR ESTIMATES OF A NEW OPERATE SPLITTING METHOD FOR THE NAVIER-STOKES EQUATIONS
    Jia, Hongen
    Teng, Kaimin
    Li, Kaitai
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (01) : 75 - 92
  • [29] OPTIMAL CONTROLS OF NAVIER-STOKES EQUATIONS
    DESAI, M
    ITO, K
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1994, 32 (05) : 1428 - 1446
  • [30] Optimal control in Navier-Stokes equations
    Maruoka, A
    Marin, M
    Kawahara, M
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1998, 9 (3-4) : 313 - 322