Unconditional Optimal Error Estimates for the Transient Navier-Stokes Equations with Damping

被引:4
|
作者
Li, Minghao [1 ]
Li, Zhenzhen [2 ]
Shi, Dongyang [3 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词
Navier-Stokes equations with damping; linearized backward Euler scheme; error splitting technique; unconditional optimal error estimates; FINITE-ELEMENT METHODS; MODIFIED CHARACTERISTICS FEMS; NICOLSON GALERKIN FEMS; SUPERCONVERGENCE ANALYSIS; MIXED-FEM; CONVERGENCE; STABILITY; SCHEME; APPROXIMATION; WEAK;
D O I
10.4208/aamm.OA-2020-0239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the transient Navier-Stokes equations with damping are con-sidered. Firstly, the semi-discrete scheme is discussed and optimal error estimates are derived. Secondly, a linearized backward Euler scheme is proposed. By the error split technique, the Stokes operator and the H-1-norm estimate, unconditional optimal er-ror estimates for the velocity in the norms L infinity(L2) and L infinity(H1), and the pressure in the norm L infinity(L2) are deduced. Finally, two numerical examples are provided to confirm the theoretical analysis.
引用
收藏
页码:248 / 274
页数:27
相关论文
共 50 条