On smoothed k-CNF formulas and the Walksat algorithm

被引:0
|
作者
Coja-Oghlan, Amin [1 ]
Feige, Uriel [2 ]
Frieze, Alan [3 ]
Krivelevich, Michael [4 ]
Vilenchik, Dan [5 ]
机构
[1] Univ Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland
[2] Israel Sci Fdn, Weizmann Inst, Rehovot, Israel
[3] Carnegie Mellon Univ, NSF, Pittsburgh, PA 15213 USA
[4] Tel Aviv Univ, Israel Sci Fdn, IL-69978 Tel Aviv, Israel
[5] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
来源
PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS | 2009年
基金
以色列科学基金会;
关键词
SAT; HEURISTICS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the model of epsilon-smoothed k-CNF formulas. Starting from an arbitrary instance F with n variables and m = dn clauses, apply the epsilon-smoothing operation of flipping the polarity of every literal in every clause independently at random with probability epsilon. Keeping epsilon and k fixed, and letting the density d = m/n grow, it is rather easy to see that for d >= epsilon(-k) In 2, F becomes whp unsatisfiable after smoothing. We show that a lower density that behaves roughly like epsilon(-k+1) suffices for this purpose. We also show that our bound on d is nearly best possible in the sense that there are k-CNF formulas F of slightly lower density that whp remain satisfiable after smoothing. One consequence of our proof is a new lower bound of Omega(2(k)/k(2)) on the density up to which Walksat solves random k-CNFs in polynomial time whp. We are not aware of any previous rigorous analysis showing that Walksat is successful at densities that are increasing as a function of k.
引用
收藏
页码:451 / +
页数:3
相关论文
共 50 条
  • [41] A Linear Time Algorithm for Computing #2SAT for Outerplanar 2-CNF Formulas
    Lopez, Marco A.
    Raymundo Marcial-Romero, J.
    De Ita, Guillermo
    Moyao, Yolanda
    PATTERN RECOGNITION, 2018, 10880 : 72 - 81
  • [42] Solving MAXSAT and #SAT on Structured CNF Formulas
    Saether, Sigve Hortemo
    Telle, Jan Arne
    Vatshelle, Martin
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2014, 2014, 8561 : 16 - 31
  • [43] An Improved Generator for 3-CNF Formulas
    S. I. Uvarov
    Automation and Remote Control, 2020, 81 : 130 - 138
  • [44] An Improved Generator for 3-CNF Formulas
    Uvarov, S., I
    AUTOMATION AND REMOTE CONTROL, 2020, 81 (01) : 130 - 138
  • [45] The satisfiability problem in regular CNF-formulas
    F. Manyà
    R. Béjar
    G. Escalada-Imaz
    Soft Computing, 1998, 2 (3) : 116 - 123
  • [46] On smoothed analysis in dense graphs and formulas
    Krivelevich, Michael
    Sudakov, Benny
    Tetali, Prasad
    RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (02) : 180 - 193
  • [47] Model Counting for CNF Formulas of Bounded Modular Treewidth
    Daniel Paulusma
    Friedrich Slivovsky
    Stefan Szeider
    Algorithmica, 2016, 76 : 168 - 194
  • [48] Improved Bounds for Sampling Solutions of Random CNF Formulas
    He, Kun
    Wu, Kewen
    Yang, Kuan
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 3330 - 3361
  • [49] Understanding Model Counting for β-acyclic CNF-formulas
    Brault-Baron, Johann
    Capelli, Florent
    Mengel, Stefan
    32ND INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2015), 2015, 30 : 143 - 156
  • [50] Model Counting for CNF Formulas of Bounded Modular Treewidth
    Paulusma, Daniel
    Slivovsky, Friedrich
    Szeider, Stefan
    ALGORITHMICA, 2016, 76 (01) : 168 - 194