On smoothed k-CNF formulas and the Walksat algorithm

被引:0
|
作者
Coja-Oghlan, Amin [1 ]
Feige, Uriel [2 ]
Frieze, Alan [3 ]
Krivelevich, Michael [4 ]
Vilenchik, Dan [5 ]
机构
[1] Univ Edinburgh, Edinburgh EH8 9YL, Midlothian, Scotland
[2] Israel Sci Fdn, Weizmann Inst, Rehovot, Israel
[3] Carnegie Mellon Univ, NSF, Pittsburgh, PA 15213 USA
[4] Tel Aviv Univ, Israel Sci Fdn, IL-69978 Tel Aviv, Israel
[5] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
来源
PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS | 2009年
基金
以色列科学基金会;
关键词
SAT; HEURISTICS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study the model of epsilon-smoothed k-CNF formulas. Starting from an arbitrary instance F with n variables and m = dn clauses, apply the epsilon-smoothing operation of flipping the polarity of every literal in every clause independently at random with probability epsilon. Keeping epsilon and k fixed, and letting the density d = m/n grow, it is rather easy to see that for d >= epsilon(-k) In 2, F becomes whp unsatisfiable after smoothing. We show that a lower density that behaves roughly like epsilon(-k+1) suffices for this purpose. We also show that our bound on d is nearly best possible in the sense that there are k-CNF formulas F of slightly lower density that whp remain satisfiable after smoothing. One consequence of our proof is a new lower bound of Omega(2(k)/k(2)) on the density up to which Walksat solves random k-CNFs in polynomial time whp. We are not aware of any previous rigorous analysis showing that Walksat is successful at densities that are increasing as a function of k.
引用
收藏
页码:451 / +
页数:3
相关论文
共 50 条
  • [21] Mapping many-valued CNF formulas to boolean CNF formulas
    Ansótegui, C
    Manyà, F
    35TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2005, : 290 - 295
  • [22] On linear CNF formulas
    Porschen, Stefan
    Speckenmeyer, Ewald
    Randerath, Bert
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2006, PROCEEDINGS, 2006, 4121 : 212 - 225
  • [23] Generalizations of matched CNF formulas
    Stefan Szeider
    Annals of Mathematics and Artificial Intelligence, 2005, 43 : 223 - 238
  • [24] Linear CNF formulas and satisfiability
    Porschen, Stefan
    Speckenmeyer, Ewald
    Zhao, Xishun
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1046 - 1068
  • [25] Maximal Satisfiable CNF Formulas
    Porschen, Stefan
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, IMECS 2012, VOL I, 2012, : 240 - 245
  • [26] Generalizations of matched CNF formulas
    Szeider, S
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2005, 43 (1-4) : 223 - 238
  • [27] COUNTING SOLUTIONS TO RANDOM CNF FORMULAS
    Galanis, Andreas
    Goldberg, Leslie Ann
    Guo, Heng
    Yang, Kuan
    SIAM JOURNAL ON COMPUTING, 2021, 50 (06) : 1701 - 1738
  • [28] The ROBDD size of simple CNF formulas
    Langberg, M
    Pnueli, A
    Rodeh, Y
    CORRECT HARDWARE DESIGN AND VERIFICATION METHODS, PROCEEDINGS, 2003, 2860 : 363 - 377
  • [29] Exact satisfiability of linear CNF formulas
    Schuh, Bernd R.
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 1 - 4
  • [30] The Approximate Degree of DNF and CNF Formulas
    Sherstov, Alexander A.
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1194 - 1207