Improved Bounds for Sampling Solutions of Random CNF Formulas

被引:0
|
作者
He, Kun [1 ]
Wu, Kewen [2 ]
Yang, Kuan [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Shanghai Jiao Tong Univ, John Hoperoft Ctr Comp Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
WALKSAT;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let Phi be a random k-CNF formula on n variables and m clauses, where each clause is a disjunction of k literals chosen independently and uniformly. Our goal is, for most Phi, to (approximately) uniformly sample from its solution space. Let alpha = m/n be the density. The previous best algorithm runs in time n(poly(k,alpha)) for any alpha less than or similar to 2(k/300) [Galanis, Goldberg, Guo, and Yang, SIAM J. Comput.'21]. In contrast, our algorithm runs in almost-linear time for any alpha less than or similar to 2(k/3).
引用
收藏
页码:3330 / 3361
页数:32
相关论文
共 50 条
  • [1] COUNTING SOLUTIONS TO RANDOM CNF FORMULAS
    Galanis, Andreas
    Goldberg, Leslie Ann
    Guo, Heng
    Yang, Kuan
    SIAM JOURNAL ON COMPUTING, 2021, 50 (06) : 1701 - 1738
  • [2] Improved Runtime Bounds for the (1+1) EA on Random 3-CNF Formulas Based on Fitness-Distance Correlation
    Doerr, Benjamin
    Neumann, Frank
    Sutton, Andrew M.
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 1415 - 1422
  • [3] An Improved Generator for 3-CNF Formulas
    S. I. Uvarov
    Automation and Remote Control, 2020, 81 : 130 - 138
  • [4] Parameterized Compilation Lower Bounds for Restricted CNF-Formulas
    Mengel, Stefan
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2016, 2016, 9710 : 3 - 12
  • [5] An Improved Generator for 3-CNF Formulas
    Uvarov, S., I
    AUTOMATION AND REMOTE CONTROL, 2020, 81 (01) : 130 - 138
  • [6] Satisfiability threshold for random XOR-CNF formulas
    Creignou, Nadia
    Daude, Herve
    Discrete Applied Mathematics, 1999, 96-97 : 41 - 53
  • [7] Satisfiability threshold for random XOR-CNF formulas
    Creignou, N
    Daude, H
    DISCRETE APPLIED MATHEMATICS, 1999, 97 : 41 - 53
  • [8] A spectral technique for random satisfiable 3CNF formulas
    Flaxman, Abraham
    RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (04) : 519 - 534
  • [9] A spectral technique for random satisfiable 3CNF formulas
    Flaxman, A
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 357 - 363
  • [10] Mapping many-valued CNF formulas to boolean CNF formulas
    Ansótegui, C
    Manyà, F
    35TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2005, : 290 - 295