Improved Bounds for Sampling Solutions of Random CNF Formulas

被引:0
|
作者
He, Kun [1 ]
Wu, Kewen [2 ]
Yang, Kuan [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Shanghai Jiao Tong Univ, John Hoperoft Ctr Comp Sci, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA | 2023年
基金
中国国家自然科学基金;
关键词
WALKSAT;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let Phi be a random k-CNF formula on n variables and m clauses, where each clause is a disjunction of k literals chosen independently and uniformly. Our goal is, for most Phi, to (approximately) uniformly sample from its solution space. Let alpha = m/n be the density. The previous best algorithm runs in time n(poly(k,alpha)) for any alpha less than or similar to 2(k/300) [Galanis, Goldberg, Guo, and Yang, SIAM J. Comput.'21]. In contrast, our algorithm runs in almost-linear time for any alpha less than or similar to 2(k/3).
引用
收藏
页码:3330 / 3361
页数:32
相关论文
共 50 条
  • [11] Short Propositional Refutations for Dense Random 3CNF Formulas
    Mueller, Sebastian
    Tzameret, Iddo
    2012 27TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS), 2012, : 501 - 510
  • [12] On linear CNF formulas
    Porschen, Stefan
    Speckenmeyer, Ewald
    Randerath, Bert
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2006, PROCEEDINGS, 2006, 4121 : 212 - 225
  • [13] Sufficient Condition for Polynomial Solvability of Random 3-CNF Formulas
    Uvarov, S., I
    DOKLADY MATHEMATICS, 2024, 110 (01) : 323 - 327
  • [14] Easily refutable subformulas of large random 3CNF formulas
    Feige, U
    Ofek, E
    AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 519 - 530
  • [15] The Hard Problems Are Almost Everywhere For Random CNF-XOR Formulas
    Dudek, Jeffrey M.
    Meel, Kuldeep S.
    Vardi, Moshe Y.
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 600 - 606
  • [16] Easily refutable subformulas of large random 3CNF formulas
    One Microsoft Way, Redmond
    WA
    98052-6399, United States
    不详
    76100, Israel
    不详
    76100, Israel
    Theory Comput., 2007, (25-43):
  • [17] Short propositional refutations for dense random 3CNF formulas
    Mueller, Sebastian
    Tzameret, Iddo
    ANNALS OF PURE AND APPLIED LOGIC, 2014, 165 (12) : 1864 - 1918
  • [18] Improved bounds for sampling colorings
    Vigoda, E
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (03) : 1555 - 1569
  • [19] Non-orderability of random triangular groups by using random 3CNF formulas
    Orlef, Damian
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (05) : 1324 - 1332
  • [20] Resolution and linear CNF formulas: Improved (n, 3)-MAxSAT algorithms
    Xu, Chao
    Chen, Jianer
    Wang, Jianxin
    THEORETICAL COMPUTER SCIENCE, 2019, 774 : 113 - 123