Improved Bounds for Sampling Solutions of Random CNF Formulas

被引:0
|
作者
He, Kun [1 ]
Wu, Kewen [2 ]
Yang, Kuan [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
[3] Shanghai Jiao Tong Univ, John Hoperoft Ctr Comp Sci, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA | 2023年
基金
中国国家自然科学基金;
关键词
WALKSAT;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let Phi be a random k-CNF formula on n variables and m clauses, where each clause is a disjunction of k literals chosen independently and uniformly. Our goal is, for most Phi, to (approximately) uniformly sample from its solution space. Let alpha = m/n be the density. The previous best algorithm runs in time n(poly(k,alpha)) for any alpha less than or similar to 2(k/300) [Galanis, Goldberg, Guo, and Yang, SIAM J. Comput.'21]. In contrast, our algorithm runs in almost-linear time for any alpha less than or similar to 2(k/3).
引用
收藏
页码:3330 / 3361
页数:32
相关论文
共 50 条