Faces of Poisson-Voronoi mosaics

被引:1
|
作者
Hug, Daniel [1 ]
Schneider, Rolf [2 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
[2] Univ Freiburg, Inst Math, D-79104 Freiburg, Germany
关键词
Poisson-Voronoi tessellation; Typical k-face; Spherical shape; CROFTON CELL;
D O I
10.1007/s00440-010-0294-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a stationary Poisson-Voronoi tessellation in Euclidean d-space and for k is an element of {1, ... , d}, we consider the typical k-dimensional face with respect to a natural centre function. We express the distribution of this typical k-face in terms of a certain Poisson process of closed halfspaces in a k-dimensional space. Then we show that, under the condition of large inradius, the relative boundary of the typical k-face lies, with high probability, in a narrow spherical annulus.
引用
下载
收藏
页码:125 / 151
页数:27
相关论文
共 50 条
  • [31] The law of the smallest disk containing the typical Poisson-Voronoi cell
    Calka, P
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (04) : 325 - 330
  • [32] General framework for testing Poisson-Voronoi assumption for real microstructures
    Vittorietti, Martina
    Kok, Piet J. J.
    Sietsma, Jilt
    Li, Wei
    Jongbloed, Geurt
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2020, 36 (04) : 604 - 627
  • [33] A stochastic model for the polygonal tundra based on Poisson-Voronoi diagrams
    Aleina, F. Cresto
    Brovkin, V.
    Muster, S.
    Boike, J.
    Kutzbach, L.
    Sachs, T.
    Zuyev, S.
    EARTH SYSTEM DYNAMICS, 2013, 4 (02) : 187 - 198
  • [34] Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces
    Isokawa, Y
    ADVANCES IN APPLIED PROBABILITY, 2000, 32 (03) : 648 - 662
  • [35] Many-faced cells and many-edged faces in 3D Poisson-Voronoi tessellations
    Hilhorst, H. J.
    Lazar, E. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [36] CLUSTER SIZE DISTRIBUTIONS OF EXTREME VALUES FOR THE POISSON-VORONOI TESSELLATION
    Chenavier, Nicolas
    Robert, Christian Y.
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (06): : 3291 - 3323
  • [37] ANCHORED EXPANSION, SPEED AND THE POISSON-VORONOI TESSELLATION IN SYMMETRIC SPACES
    Benjamini, Itai
    Paquette, Elliot
    Pfeffer, Joshua
    ANNALS OF PROBABILITY, 2018, 46 (04): : 1917 - 1956
  • [38] An explicit expression for the distribution of the number of sides of the typical Poisson-Voronoi cell
    Calka, P
    ADVANCES IN APPLIED PROBABILITY, 2003, 35 (04) : 863 - 870
  • [39] Domain-size distribution in a Poisson-Voronoi nucleation and growth transformation
    Pineda, Eloi
    Garrido, Victor
    Crespo, Daniel
    PHYSICAL REVIEW E, 2007, 75 (04):
  • [40] Many-sided Poisson-Voronoi cells with only Gabriel neighbors
    Hilhorst, H. J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (07):