Faces of Poisson-Voronoi mosaics

被引:1
|
作者
Hug, Daniel [1 ]
Schneider, Rolf [2 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
[2] Univ Freiburg, Inst Math, D-79104 Freiburg, Germany
关键词
Poisson-Voronoi tessellation; Typical k-face; Spherical shape; CROFTON CELL;
D O I
10.1007/s00440-010-0294-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a stationary Poisson-Voronoi tessellation in Euclidean d-space and for k is an element of {1, ... , d}, we consider the typical k-dimensional face with respect to a natural centre function. We express the distribution of this typical k-face in terms of a certain Poisson process of closed halfspaces in a k-dimensional space. Then we show that, under the condition of large inradius, the relative boundary of the typical k-face lies, with high probability, in a narrow spherical annulus.
引用
下载
收藏
页码:125 / 151
页数:27
相关论文
共 50 条
  • [21] FRACTAL RANDOM SERIES GENERATED BY POISSON-VORONOI TESSELLATIONS
    Calka, Pierre
    Demichel, Yann
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) : 4157 - 4182
  • [22] Temporal evolution of the domain structure in a Poisson-Voronoi transformation
    Pineda, Eloi
    Crespo, Daniel
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [23] LARGE FACES IN POISSON HYPERPLANE MOSAICS
    Hug, Daniel
    Schneider, Rolf
    ANNALS OF PROBABILITY, 2010, 38 (03): : 1320 - 1344
  • [24] Statistical properties of Poisson-Voronoi tessellation cells in bounded regions
    Gezer, Fatih
    Aykroyd, Robert G.
    Barber, Stuart
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (05) : 915 - 933
  • [25] New Monte Carlo method for planar Poisson-Voronoi cells
    Hilhorst, H. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (11) : 2615 - 2638
  • [26] Wigner surmises and the two-dimensional Poisson-Voronoi tessellation
    Muche, Lutz
    Nieminen, John M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [27] CONTINUUM LINE-OF-SIGHT PERCOLATION ON POISSON-VORONOI TESSELLATIONS
    Le Gall, Quentin
    Blaszczyszyn, Bartlomiej
    Cali, Elie
    En-Najjary, Taoufik
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (02) : 510 - 536
  • [28] Spatial cluster point processes related to Poisson-Voronoi tessellations
    Moller, Jesper
    Rasmussen, Jakob Gulddahl
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (02) : 431 - 441
  • [29] Poisson-Voronoi spanning trees with applications to the optimization of communication networks
    Baccelli, F
    Zuyev, S
    OPERATIONS RESEARCH, 1999, 47 (04) : 619 - 631
  • [30] Elongated Poisson-Voronoi cells in an empty half-plane
    Calka, Pierre
    Demichel, Yann
    Enriquez, Nathanael
    ADVANCES IN MATHEMATICS, 2022, 410