Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces

被引:8
|
作者
Isokawa, Y [1 ]
机构
[1] Kagoshima Univ, Fac Educ, Kagoshima 890, Japan
关键词
random tessellation; Voronoi tessellation; mean characteristics; hyperbolic space;
D O I
10.1017/S000186780001017X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces, and give explicit expressions for mean surface area, mean perimeter length, and mean number of vertices of their cells. Furthermore we compare these mean characteristics with those for Poisson-Voronoi tessellations in three-dimensional Euclidean spaces. It is shown that, as the absolute value of the curvature of hyperbolic spaces increases from zero to infinity, these mean characteristics increase monotonically from those for the Euclidean case to infinity.
引用
收藏
页码:648 / 662
页数:15
相关论文
共 50 条
  • [1] Some distributional results for Poisson-Voronoi tessellations
    Baumstark, Volker
    Last, Guenter
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (01) : 16 - 40
  • [2] MULTITYPE THRESHOLD GROWTH: CONVERGENCE TO POISSON-VORONOI TESSELLATIONS
    Gravner, Janko
    Griffeath, David
    ANNALS OF APPLIED PROBABILITY, 1997, 7 (03): : 615 - 647
  • [3] FRACTAL RANDOM SERIES GENERATED BY POISSON-VORONOI TESSELLATIONS
    Calka, Pierre
    Demichel, Yann
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (06) : 4157 - 4182
  • [4] Criteria for Poisson process convergence with applications to inhomogeneous Poisson-Voronoi tessellations
    Pianoforte, Federico
    Schulte, Matthias
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 147 : 388 - 422
  • [5] CONTINUUM LINE-OF-SIGHT PERCOLATION ON POISSON-VORONOI TESSELLATIONS
    Le Gall, Quentin
    Blaszczyszyn, Bartlomiej
    Cali, Elie
    En-Najjary, Taoufik
    ADVANCES IN APPLIED PROBABILITY, 2021, 53 (02) : 510 - 536
  • [6] Spatial cluster point processes related to Poisson-Voronoi tessellations
    Moller, Jesper
    Rasmussen, Jakob Gulddahl
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (02) : 431 - 441
  • [7] Statistical topology of three-dimensional Poisson-Voronoi cells and cell boundary networks
    Lazar, Emanuel A.
    Mason, Jeremy K.
    MacPherson, Robert D.
    Srolovitz, David J.
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [8] Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes
    Lucarini, Valerio
    JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (01) : 185 - 206
  • [9] Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes
    Valerio Lucarini
    Journal of Statistical Physics, 2009, 134
  • [10] POISSON-VORONOI APPROXIMATION
    Heveling, Matthias
    Reitzner, Matthias
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (02): : 719 - 736