Faces of Poisson-Voronoi mosaics

被引:1
|
作者
Hug, Daniel [1 ]
Schneider, Rolf [2 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
[2] Univ Freiburg, Inst Math, D-79104 Freiburg, Germany
关键词
Poisson-Voronoi tessellation; Typical k-face; Spherical shape; CROFTON CELL;
D O I
10.1007/s00440-010-0294-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a stationary Poisson-Voronoi tessellation in Euclidean d-space and for k is an element of {1, ... , d}, we consider the typical k-dimensional face with respect to a natural centre function. We express the distribution of this typical k-face in terms of a certain Poisson process of closed halfspaces in a k-dimensional space. Then we show that, under the condition of large inradius, the relative boundary of the typical k-face lies, with high probability, in a narrow spherical annulus.
引用
收藏
页码:125 / 151
页数:27
相关论文
共 50 条
  • [1] Faces of Poisson–Voronoi mosaics
    Daniel Hug
    Rolf Schneider
    [J]. Probability Theory and Related Fields, 2011, 151 : 125 - 151
  • [2] POISSON-VORONOI APPROXIMATION
    Heveling, Matthias
    Reitzner, Matthias
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (02): : 719 - 736
  • [3] Poisson-Voronoi Mosaic on a surface
    Calka, Pierre
    Chapron, Aurelie
    Enriquez, Nathanael
    [J]. SEMINAIRE DE PROBABILITES L, 2019, 2252 : 9 - 16
  • [4] ON THE DILATED FACETS OF A POISSON-VORONOI TESSELLATION
    Redenbach, Claudia
    [J]. IMAGE ANALYSIS & STEREOLOGY, 2011, 30 (01): : 31 - 38
  • [5] On the spectral function of the Poisson-Voronoi cells
    Goldman, A
    Calka, P
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (06): : 1057 - 1082
  • [6] On the spectral function of the Poisson-Voronoi cells
    Goldman, A
    Calka, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (09): : 835 - 840
  • [7] The Poisson-Voronoi tessellation: Relationships for edges
    Muche, L
    [J]. ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) : 279 - 296
  • [8] Poisson-Voronoi Tessellation on a Riemannian Manifold
    Calka, Pierre
    Chapron, Aurelie
    Enriquez, Nathanael
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (07) : 5413 - 5459
  • [9] Asymptotic theory for statistics of the Poisson-Voronoi approximation
    Thale, Christoph
    Yukich, J. E.
    [J]. BERNOULLI, 2016, 22 (04) : 2372 - 2400
  • [10] A central limit theorem for the Poisson-Voronoi approximation
    Schulte, Matthias
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2012, 49 (3-5) : 285 - 306