On the spectral function of the Poisson-Voronoi cells

被引:3
|
作者
Goldman, A [1 ]
Calka, P [1 ]
机构
[1] Univ Lyon 1, Probabil Lab, F-69622 Villeurbanne, France
关键词
D O I
10.1016/S0764-4442(01)01886-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by phi (t) = Sigma (n greater than or equal to1) e(-lambda nt), t > 0, the spectral function related to the Dirichlet Laplacian for the typical cell e of a standard Poisson-Voronoi tessellation in R-d, d greater than or equal to 2. We show that the expectation E phi (t), t > 0, is a functional of the convex hull of a standard d-dimensional Brownian bridge. This enables us to study the asymptotic behaviour of E phi (t), when t --> 0(+), +infinity. In particular; we prove that in the two-dimensional case (d = 2) the law of the first eigenvalue lambda (1) of C satisfies the asymptotic relation ln Ee(-t lambda1) similar to -t(1/2)4 root pi j(0), when t --> +infinity, where j(0) is the first zero of the Bessel function J(0). (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:835 / 840
页数:6
相关论文
共 50 条
  • [1] On the spectral function of the Poisson-Voronoi cells
    Goldman, A
    Calka, P
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (06): : 1057 - 1082
  • [2] Large Poisson-Voronoi cells and Crofton cells
    Hug, D
    Reitzner, M
    Schneider, R
    [J]. ADVANCES IN APPLIED PROBABILITY, 2004, 36 (03) : 667 - 690
  • [3] POISSON-VORONOI APPROXIMATION
    Heveling, Matthias
    Reitzner, Matthias
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (02): : 719 - 736
  • [4] Poisson-Voronoi Mosaic on a surface
    Calka, Pierre
    Chapron, Aurelie
    Enriquez, Nathanael
    [J]. SEMINAIRE DE PROBABILITES L, 2019, 2252 : 9 - 16
  • [5] Faces of Poisson-Voronoi mosaics
    Hug, Daniel
    Schneider, Rolf
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (1-2) : 125 - 151
  • [6] Statistical properties of Poisson-Voronoi tessellation cells in bounded regions
    Gezer, Fatih
    Aykroyd, Robert G.
    Barber, Stuart
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (05) : 915 - 933
  • [7] New Monte Carlo method for planar Poisson-Voronoi cells
    Hilhorst, H. J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (11) : 2615 - 2638
  • [8] ON THE DILATED FACETS OF A POISSON-VORONOI TESSELLATION
    Redenbach, Claudia
    [J]. IMAGE ANALYSIS & STEREOLOGY, 2011, 30 (01): : 31 - 38
  • [9] Elongated Poisson-Voronoi cells in an empty half-plane
    Calka, Pierre
    Demichel, Yann
    Enriquez, Nathanael
    [J]. ADVANCES IN MATHEMATICS, 2022, 410
  • [10] The Poisson-Voronoi tessellation: Relationships for edges
    Muche, L
    [J]. ADVANCES IN APPLIED PROBABILITY, 2005, 37 (02) : 279 - 296