Optimality conditions for extremals containing bang and inactivated arcs

被引:1
|
作者
Chittaro, Francesca C. [1 ,2 ]
Poggiolini, Laura [3 ]
机构
[1] Aix Marseille Univ, CNRS, ENSAM, LSIS,UMR 7296, F-13397 Marseille, France
[2] Univ Toulon & Var, CNRS, LSIS, UMR 7296, F-83957 La Garde, France
[3] Univ Florence, Dipartimento Matemat & Informat Ulisse Dini, Via Santa Marta 3, I-50139 Florence, Italy
关键词
D O I
10.1109/CDC.2017.8263938
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a class of optimal control problems with control-affine dynamics and integral cost linear in the absolute value of the control. The Pontryagin extremals associated with such systems are given by (possible) concatenations of bang arcs with singular arcs and with inactivated arcs, that is, arcs where the control is identically zero. We focus on Pontryagin extremals of the form bang-inactive-bang. We use Hamiltonian methods to prove that the coercivity of a suitable second variation associated with the candidate extremal is sufficient to prove its strong-local optimality.
引用
收藏
页码:1975 / 1980
页数:6
相关论文
共 50 条