A Lightweight Transformer for Next-Item Product Recommendation

被引:4
|
作者
Mei, M. Jeffrey [1 ]
Zuber, Cole [1 ]
Khazaeni, Yasaman [1 ]
机构
[1] Wayfair LLC, Boston, MA 02116 USA
关键词
transformers; style;
D O I
10.1145/3523227.3547491
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply a transformer using sequential browse history to generate next-item product recommendations. Interpreting the learned item embeddings, we show that the model is able to implicitly learn price, popularity, style and functionality attributes without being explicitly passed these features during training. Our real-life test of this model on Wayfair's different international stores show mixed results (but overall win). Diagnosing the cause, we identify a useful metric (average number of customers browsing each product) to ensure good model convergence. We also find limitations of using standard metrics like recall and nDCG, which do not correctly account for the positional effects of showing items on the Wayfair website, and empirically determine a more accurate discount factor.
引用
收藏
页码:546 / 549
页数:4
相关论文
共 50 条
  • [41] Enhancing Sequential Next-Item Prediction through Modelling Non-Item Pages
    Fischer, Elisabeth
    Or, Daniel Schl Spacing Diaeresis
    Zehe, Albin
    Hotho, Andreas
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 128 - 136
  • [42] BiGCAN: A novel SRS-based bidirectional graph Convolution Attention Network for dynamic user preference and next-item recommendation
    Kannikaklang, Nikorn
    Thamviset, Wachirawut
    Wongthanavasu, Sartra
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 265
  • [43] M3-IB: A Memory-Augment Multi-modal Information Bottleneck Model for Next-Item Recommendation
    Du, Yingpeng
    Liu, Hongzhi
    Wu, Zhonghai
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT II, 2022, : 19 - 35
  • [44] Incorporating time-interval sequences in linear TV for next-item prediction
    Bogina, Veronika
    Variat, Yuri
    Kuflik, Tsvi
    Dim, Eyal
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 192
  • [45] Sequential ensemble learning for next item recommendation
    Du, Yingpeng
    Liu, Hongzhi
    Song, Yang
    Wang, Zekai
    Wu, Zhonghai
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [46] Attenuated and normalized item-item product network for sequential recommendation
    Di, Weiqiang
    Wu, Zhihao
    Lin, Youfang
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [47] Attenuated and normalized item-item product network for sequential recommendation
    Di W.
    Wu Z.
    Lin Y.
    PeerJ Computer Science, 2022, 8
  • [48] A Simple Convolutional Generative Network for Next Item Recommendation
    Yuan, Fajie
    Karatzoglou, Alexandros
    Arapakis, Ioannis
    Jose, Joemon M.
    He, Xiangnan
    PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), 2019, : 582 - 590
  • [49] BiLSTCAN: A Novel SRS-Based Bidirectional Long Short-Term Capsule Attention Network for Dynamic User Preference and Next-Item Recommendation
    Kannikaklang, Nikorn
    Thamviset, Wachirawut
    Wongthanavasu, Sartra
    IEEE ACCESS, 2024, 12 : 6879 - 6899
  • [50] DynamicRec: A Dynamic Convolutional Network for Next Item Recommendation
    Tanjim, Md Mehrab
    Ayuubi, Hammad A.
    Cottrell, Garrison W.
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2237 - 2240