A Lightweight Transformer for Next-Item Product Recommendation

被引:4
|
作者
Mei, M. Jeffrey [1 ]
Zuber, Cole [1 ]
Khazaeni, Yasaman [1 ]
机构
[1] Wayfair LLC, Boston, MA 02116 USA
关键词
transformers; style;
D O I
10.1145/3523227.3547491
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply a transformer using sequential browse history to generate next-item product recommendations. Interpreting the learned item embeddings, we show that the model is able to implicitly learn price, popularity, style and functionality attributes without being explicitly passed these features during training. Our real-life test of this model on Wayfair's different international stores show mixed results (but overall win). Diagnosing the cause, we identify a useful metric (average number of customers browsing each product) to ensure good model convergence. We also find limitations of using standard metrics like recall and nDCG, which do not correctly account for the positional effects of showing items on the Wayfair website, and empirically determine a more accurate discount factor.
引用
收藏
页码:546 / 549
页数:4
相关论文
共 50 条
  • [21] Position-category-aware attention network for next-item recommendation
    Qiu, Liqing
    Dou, Mingjian
    Jing, Caixia
    Liu, Yuying
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (06) : 3231 - 3259
  • [22] Next-Item Recommendation With Deep Adaptable Co-Embedding Neural Networks
    Chen, Daochang
    Hu, Wenzheng
    Yuan, Bo
    Zhang, Rui
    Wang, Jianqiang
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 (28) : 1220 - 1224
  • [23] Sequence-Aware Factored Mixed Similarity Model for Next-Item Recommendation
    Zhong, Liulan
    Lin, Jing
    Pan, Weike
    Ming, Zhong
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 181 - 188
  • [24] On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation
    Xia, Xin
    Yin, Hongzhi
    Yu, Junliang
    Wang, Qinyong
    Xu, Guandong
    Quoc Viet Hung Nguyen
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 546 - 555
  • [25] Cold-Start Next-Item Recommendation by User-Item Matching and Auto-Encoders
    Wu, Hanrui
    Wong, Chung Wang
    Zhang, Jia
    Yan, Yuguang
    Yu, Dahai
    Long, Jinyi
    Ng, Michael K.
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2477 - 2489
  • [26] Online Personalized Next-Item Recommendation via Long Short Term Preference Learning
    Du, Yingpeng
    Liu, Hongzhi
    Qu, Yuanhang
    Wu, Zhonghai
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 915 - 927
  • [27] Next-item Recommendations in Short Sessions
    Song, Wenzhuo
    Wang, Shoujin
    Wang, Yan
    Wang, Shengsheng
    15TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS 2021), 2021, : 282 - 291
  • [28] What Can History Tell Us? Identifying Relevant Sessions for Next-Item Recommendation
    Sun, Ke
    Qian, Tieyun
    Yin, Hongzhi
    Chen, Tong
    Chen, Yiqi
    Chen, Ling
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 1593 - 1602
  • [29] Next-item discovery in the market basket analysis
    Cavique, Luis
    2005 PORTUGUESE CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 198 - 199
  • [30] Learning from History and Present: Next-item Recommendation via Discriminatively Exploiting User Behaviors
    Li, Zhi
    Zhao, Hongke
    Liu, Qi
    Huang, Zhenya
    Mei, Tao
    Chen, Enhong
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1734 - 1743