A Lightweight Transformer for Next-Item Product Recommendation

被引:4
|
作者
Mei, M. Jeffrey [1 ]
Zuber, Cole [1 ]
Khazaeni, Yasaman [1 ]
机构
[1] Wayfair LLC, Boston, MA 02116 USA
关键词
transformers; style;
D O I
10.1145/3523227.3547491
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply a transformer using sequential browse history to generate next-item product recommendations. Interpreting the learned item embeddings, we show that the model is able to implicitly learn price, popularity, style and functionality attributes without being explicitly passed these features during training. Our real-life test of this model on Wayfair's different international stores show mixed results (but overall win). Diagnosing the cause, we identify a useful metric (average number of customers browsing each product) to ensure good model convergence. We also find limitations of using standard metrics like recall and nDCG, which do not correctly account for the positional effects of showing items on the Wayfair website, and empirically determine a more accurate discount factor.
引用
收藏
页码:546 / 549
页数:4
相关论文
共 50 条
  • [31] Implicit Session Contexts for Next-Item Recommendations
    Oh, Sejoon
    Bhardwaj, Ankur
    Han, Jongseok
    Kim, Sungchul
    Rossi, Ryan A.
    Kumar, Srijan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4364 - 4368
  • [32] Hierarchical Attentive Transaction Embedding With Intra- and Inter-Transaction Dependencies for Next-Item Recommendation
    Wang, Shoujin
    Cao, Longbing
    Hu, Liang
    Berkovsky, Shlomo
    Huang, Xiaoshui
    Xiao, Lin
    Lu, Wenpeng
    IEEE INTELLIGENT SYSTEMS, 2021, 36 (04) : 56 - 64
  • [33] End-to-End Optimization of Quantization-Based Structure Learning and Interventional Next-Item Recommendation
    Fu, Kairui
    Miao, Qiaowei
    Zhang, Shengyu
    Kuang, Kun
    Wu, Fei
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT I, 2024, 14473 : 415 - 429
  • [34] Lighter and Better: Low-Rank Decomposed Self-Attention Networks for Next-Item Recommendation
    Fan, Xinyan
    Liu, Zheng
    Lian, Jianxun
    Zhao, Wayne Xin
    Xie, Xing
    Wen, Ji-Rong
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1733 - 1737
  • [35] Modelling Local and Global Dependencies for Next-Item Recommendations
    Wang, Nan
    Wang, Shoujin
    Wang, Yan
    Sheng, Quan Z.
    Orgun, Mehmet
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT II, 2020, 12343 : 285 - 300
  • [36] Modeling Cross-session Information with Multi-interest Graph Neural Networks for the Next-item Recommendation
    Wang, Ting-Yun
    Chen, Chiao-Ting
    Huang, Ju-Chun
    Huang, Szu-Hao
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (01)
  • [37] Next-item recommendation within a short session using the combined features of horizontal and vertical convolutional neural network
    Chhotelal Kumar
    Mukesh Kumar
    Multimedia Tools and Applications, 2024, 83 : 38611 - 38634
  • [38] TLSAN: Time-aware long- and short-term attention network for next-item recommendation
    Zhang, Jianqing
    Wang, Dongjing
    Yu, Dongjin
    NEUROCOMPUTING, 2021, 441 : 179 - 191
  • [39] Next-item recommendation within a short session using the combined features of horizontal and vertical convolutional neural network
    Kumar, Chhotelal
    Kumar, Mukesh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 38611 - 38634
  • [40] TLSAN: Time-aware long- and short-term attention network for next-item recommendation
    Zhang, Jianqing
    Wang, Dongjing
    Yu, Dongjin
    Wang, Dongjing (dongjing.wang@hdu.edu.cn), 1600, Elsevier B.V. (441): : 179 - 191