A Lightweight Transformer for Next-Item Product Recommendation

被引:4
|
作者
Mei, M. Jeffrey [1 ]
Zuber, Cole [1 ]
Khazaeni, Yasaman [1 ]
机构
[1] Wayfair LLC, Boston, MA 02116 USA
关键词
transformers; style;
D O I
10.1145/3523227.3547491
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply a transformer using sequential browse history to generate next-item product recommendations. Interpreting the learned item embeddings, we show that the model is able to implicitly learn price, popularity, style and functionality attributes without being explicitly passed these features during training. Our real-life test of this model on Wayfair's different international stores show mixed results (but overall win). Diagnosing the cause, we identify a useful metric (average number of customers browsing each product) to ensure good model convergence. We also find limitations of using standard metrics like recall and nDCG, which do not correctly account for the positional effects of showing items on the Wayfair website, and empirically determine a more accurate discount factor.
引用
收藏
页码:546 / 549
页数:4
相关论文
共 50 条
  • [1] Next-item Recommendation with Sequential Hypergraphs
    Wang, Jianling
    Ding, Kaize
    Hong, Liangjie
    Liu, Huan
    Caverlee, James
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1101 - 1110
  • [2] BIS: Bidirectional Item Similarity for Next-Item Recommendation
    Zeng, Zijie
    Pan, Weike
    Ming, Zhong
    WEB SERVICES - ICWS 2018, 2018, 10966 : 311 - 325
  • [3] G-TransRec: A Transformer-Based Next-Item Recommendation With Time Prediction
    Chen, Yi-Cheng
    Chen, Yen-Liang
    Hsu, Chia-Hsiang
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (03) : 4175 - 4188
  • [4] Learning a Hierarchical Intent Model for Next-Item Recommendation
    Zhu, Nengjun
    Cao, Jian
    Lu, Xinjiang
    Xiong, Hui
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2022, 40 (02)
  • [5] ATM: An Attentive Translation Model for Next-Item Recommendation
    Wu, Bin
    He, Xiangnan
    Sun, Zhongchuan
    Chen, Liang
    Ye, Yangdong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (03) : 1448 - 1459
  • [6] Next-Item Recommendation via Collaborative Filtering with Bidirectional Item Similarity
    Zeng, Zijie
    Lin, Jing
    Li, Lin
    Pan, Weike
    Ming, Zhong
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (01)
  • [7] Understanding item consumption orders for right-order next-item recommendation
    Chen, Jun
    Wang, Xuecheng
    Wang, Chaokun
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 57 (01) : 55 - 78
  • [8] Sequence-aware similarity learning for next-item recommendation
    Zhan, Zhuoxin
    Zhong, Liulan
    Lin, Jing
    Pan, Weike
    Ming, Zhong
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (07): : 7509 - 7534
  • [9] Sequence-aware similarity learning for next-item recommendation
    Zhuoxin Zhan
    Liulan Zhong
    Jing Lin
    Weike Pan
    Zhong Ming
    The Journal of Supercomputing, 2021, 77 : 7509 - 7534
  • [10] Understanding item consumption orders for right-order next-item recommendation
    Jun Chen
    Xuecheng Wang
    Chaokun Wang
    Knowledge and Information Systems, 2018, 57 : 55 - 78