Pseudomonotone variational inequalities: Convergence of the auxiliary problem method

被引:21
|
作者
El Farouq, N [1 ]
机构
[1] Univ Clermont Ferrand, Toulouse, France
[2] CNRS, LAAS, F-31077 Toulouse, France
关键词
variational inequalities; optimization problems; generalized monotonicity; pseudomonotonicity; convergence of algorithms;
D O I
10.1023/A:1012234817482
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper deals with the convergence of the algorithm built on the auxiliary problem principle for solving pseudomonotone (in the sense of Karamardian) variational inequalities.
引用
收藏
页码:305 / 326
页数:22
相关论文
共 50 条
  • [21] Auxiliary problem method for mixed variational-like inequalities
    Zeng, LC
    Lin, LJ
    Yao, JC
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (02): : 515 - 529
  • [22] Modified projection method for strongly pseudomonotone variational inequalities
    Pham Duy Khanh
    Phan Tu Vuong
    Journal of Global Optimization, 2014, 58 : 341 - 350
  • [23] Convergence analysis of iterative methods for some variational inequalities with pseudomonotone operators
    Badriev, IB
    Zadvornov, OA
    Saddek, AM
    DIFFERENTIAL EQUATIONS, 2001, 37 (07) : 934 - 942
  • [24] A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection
    Okeke, Chibueze C.
    Bello, Abdulmalik U.
    Oyewole, Olawale K.
    JOURNAL OF ANALYSIS, 2022, 30 (03): : 965 - 987
  • [25] Modified Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Jiajia Cheng
    Hongwei Liu
    JournalofHarbinInstituteofTechnology(NewSeries), 2022, 29 (04) : 41 - 48
  • [26] A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection
    Chibueze C. Okeke
    Abdulmalik U. Bello
    Olawale K. Oyewole
    The Journal of Analysis, 2022, 30 : 965 - 987
  • [27] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 319 - 345
  • [28] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    Acta Applicandae Mathematicae, 2020, 170 : 319 - 345
  • [29] Convergence Analysis of Iterative Methods for Some Variational Inequalities with Pseudomonotone Operators
    I. B. Badriev
    O. A. Zadvornov
    A. M. Saddek
    Differential Equations, 2001, 37 : 934 - 942
  • [30] A New Extragradient Method for Strongly Pseudomonotone Variational Inequalities
    Pham Duy Khanh
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (09) : 1131 - 1143