Pseudomonotone variational inequalities: Convergence of the auxiliary problem method

被引:21
|
作者
El Farouq, N [1 ]
机构
[1] Univ Clermont Ferrand, Toulouse, France
[2] CNRS, LAAS, F-31077 Toulouse, France
关键词
variational inequalities; optimization problems; generalized monotonicity; pseudomonotonicity; convergence of algorithms;
D O I
10.1023/A:1012234817482
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper deals with the convergence of the algorithm built on the auxiliary problem principle for solving pseudomonotone (in the sense of Karamardian) variational inequalities.
引用
收藏
页码:305 / 326
页数:22
相关论文
共 50 条
  • [31] Modified projection method for strongly pseudomonotone variational inequalities
    Pham Duy Khanh
    Phan Tu Vuong
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 58 (02) : 341 - 350
  • [32] Regularized auxiliary problem principle for variational inequalities
    Baasansuren, J
    Khan, AA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (8-9) : 995 - 1002
  • [33] A proximal method for pseudomonotone type variational-like inequalities
    Schaible, S
    Yao, JC
    Zeng, LC
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (02): : 497 - 513
  • [34] Strong Convergence of an Iterative Procedure for Pseudomonotone Variational Inequalities and Fixed Point Problems
    Yin, Tzu-Chien
    Pitea, Ariana
    FILOMAT, 2022, 36 (12) : 4111 - 4122
  • [35] An alternated inertial method for pseudomonotone variational inequalities in Hilbert spaces
    Ferdinard U. Ogbuisi
    Yekini Shehu
    Jen-Chih Yao
    Optimization and Engineering, 2022, 23 : 917 - 945
  • [36] An inertial Popov's method for solving pseudomonotone variational inequalities
    Duong Viet Thong
    Li, Xiao-Huan
    Dong, Qiao-Li
    Cho, Yeol Je
    Rassias, Themistocles M.
    OPTIMIZATION LETTERS, 2021, 15 (02) : 757 - 777
  • [37] An alternated inertial method for pseudomonotone variational inequalities in Hilbert spaces
    Ogbuisi, Ferdinard U.
    Shehu, Yekini
    Yao, Jen-Chih
    OPTIMIZATION AND ENGINEERING, 2022, 23 (02) : 917 - 945
  • [38] An analytic center cutting plane method for pseudomonotone variational inequalities
    Goffin, JL
    Marcotte, P
    Zhu, DL
    OPERATIONS RESEARCH LETTERS, 1997, 20 (01) : 1 - 6
  • [39] A new linear convergence method for a lipschitz pseudomonotone variational inequality
    Nwokoye R.N.
    Okeke C.C.
    Shehu Y.
    Applied Set-Valued Analysis and Optimization, 2021, 3 (02): : 215 - 220
  • [40] An inertial Popov’s method for solving pseudomonotone variational inequalities
    Duong Viet Thong
    Xiao-Huan Li
    Qiao-Li Dong
    Yeol Je Cho
    Themistocles M. Rassias
    Optimization Letters, 2021, 15 : 757 - 777