A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection

被引:0
|
作者
Okeke, Chibueze C. [1 ]
Bello, Abdulmalik U. [2 ,3 ]
Oyewole, Olawale K. [4 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] African Univ Sci & Technol, Math Inst, Abuja, Nigeria
[3] Fed Univ Dutsin Ma, Dept Math, Dutsin Ma, Kastina State, Nigeria
[4] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 03期
基金
新加坡国家研究基金会;
关键词
Variational inequalities; Pseudomonotone mapping; Self-adaptive step size; Single projection; Banach spaces; EXTRAGRADIENT METHOD; SYSTEMS; POINTS;
D O I
10.1007/s41478-022-00384-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a single projection method with the Bregman distance technique for solving pseudomonotone variational inequalities in real reflexive Banach space. The step-sizes, which varies from step to step, are found over each iteration by cheap computation without any linesearch. We prove strong convergence result under suitable conditions on the cost operator. We further provide an application of our main result and also report some numerical experiments to illustrate the performance and efficiency of our proposed method.
引用
收藏
页码:965 / 987
页数:23
相关论文
共 50 条