Projection and Contraction Methods for Solving Bilevel Pseudomonotone Variational Inequalities

被引:4
|
作者
Yang, Jun [1 ]
机构
[1] Xianyang Normal Univ, Sch Math & Stat, Xianyang 712000, Shaanxi, Peoples R China
关键词
Bilevel variational inequality; Projection; Gradient method; Pseudomonotone mapping; Convex set; SUBGRADIENT EXTRAGRADIENT METHOD; ALGORITHMS; CONVERGENCE; POINTS;
D O I
10.1007/s10440-022-00468-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to investigate two new projection and contraction algorithms for solving bilevel pseudomonotone variational inequalities. The strong convergence of algorithms is established without the knowledge of the Lipschitz constants and the strong monotonicity coefficient. Finally, we consider several preliminary numerical experiments to show the advantages of the proposed algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Projection and Contraction Methods for Solving Bilevel Pseudomonotone Variational Inequalities
    Jun Yang
    [J]. Acta Applicandae Mathematicae, 2022, 177
  • [2] An extragradient algorithm for solving bilevel pseudomonotone variational inequalities
    Anh, P. N.
    Kim, J. K.
    Muu, L. D.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (03) : 627 - 639
  • [3] An extragradient algorithm for solving bilevel pseudomonotone variational inequalities
    P. N. Anh
    J. K. Kim
    L. D. Muu
    [J]. Journal of Global Optimization, 2012, 52 : 627 - 639
  • [4] Convergence of the projection and contraction methods for solving bilevel variational inequality problems
    Thang, Tran Van
    Anh, Pham Ngoc
    Truong, Nguyen Duc
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10867 - 10885
  • [5] Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces
    Pham Ngoc Anh
    T. V. Thang
    H. T. C. Thach
    [J]. Numerical Algorithms, 2021, 87 : 335 - 363
  • [6] Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces
    Pham Ngoc Anh
    Thang, T., V
    Thach, H. T. C.
    [J]. NUMERICAL ALGORITHMS, 2021, 87 (01) : 335 - 363
  • [7] Projection subgradient algorithms for solving pseudomonotone variational inequalities and pseudomonotone equilibrium problems
    Guo, Wenping
    Yu, Youli
    Zhu, Zhichuan
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (03): : 75 - 86
  • [8] PROJECTION SUBGRADIENT ALGORITHMS FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Guo, Wenping
    Yu, Youli
    Zhu, Zhichuan
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (03): : 75 - 86
  • [9] Inertial projection and contraction methods for pseudomonotone variational inequalities with non-Lipschitz operators and applications
    Tan, Bing
    Li, Songxiao
    Cho, Sun Young
    [J]. APPLICABLE ANALYSIS, 2023, 102 (04) : 1199 - 1221
  • [10] A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection
    Okeke, Chibueze C.
    Bello, Abdulmalik U.
    Oyewole, Olawale K.
    [J]. JOURNAL OF ANALYSIS, 2022, 30 (03): : 965 - 987