A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection

被引:0
|
作者
Okeke, Chibueze C. [1 ]
Bello, Abdulmalik U. [2 ,3 ]
Oyewole, Olawale K. [4 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] African Univ Sci & Technol, Math Inst, Abuja, Nigeria
[3] Fed Univ Dutsin Ma, Dept Math, Dutsin Ma, Kastina State, Nigeria
[4] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 03期
基金
新加坡国家研究基金会;
关键词
Variational inequalities; Pseudomonotone mapping; Self-adaptive step size; Single projection; Banach spaces; EXTRAGRADIENT METHOD; SYSTEMS; POINTS;
D O I
10.1007/s41478-022-00384-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a single projection method with the Bregman distance technique for solving pseudomonotone variational inequalities in real reflexive Banach space. The step-sizes, which varies from step to step, are found over each iteration by cheap computation without any linesearch. We prove strong convergence result under suitable conditions on the cost operator. We further provide an application of our main result and also report some numerical experiments to illustrate the performance and efficiency of our proposed method.
引用
收藏
页码:965 / 987
页数:23
相关论文
共 50 条
  • [31] Modified projection method for pseudomonotone variational inequalities
    Noor, MA
    [J]. APPLIED MATHEMATICS LETTERS, 2002, 15 (03) : 315 - 320
  • [32] Pseudomonotone Variational Inequalities: Convergence of Proximal Methods
    N. EL FAROUQ
    [J]. Journal of Optimization Theory and Applications, 2001, 109 : 311 - 326
  • [33] CONVERGENCE RATE OF A GRADIENT PROJECTION METHOD FOR SOLVING VARIATIONAL INEQUALITIES
    Pham Duy Khanh
    Le Van Vinh
    Phan Tu Vuong
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (06): : 951 - 964
  • [34] Pseudomonotone variational inequalities: Convergence of proximal methods
    El Farouq, N
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (02) : 311 - 326
  • [35] New Double Projection Algorithm for Solving Variational Inequalities
    Zheng, Lian
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [36] Fixed-time stability of projection neurodynamic network for solving pseudomonotone variational inequalities
    Zheng, Jinlan
    Chen, Jiawei
    Ju, Xingxing
    [J]. NEUROCOMPUTING, 2022, 505 : 402 - 412
  • [37] A new low-cost feasible projection algorithm for pseudomonotone variational inequalities
    Zhang, Yongle
    Feng, Limei
    He, Yiran
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (02) : 1031 - 1054
  • [38] A new low-cost feasible projection algorithm for pseudomonotone variational inequalities
    Yongle Zhang
    Limei Feng
    Yiran He
    [J]. Numerical Algorithms, 2023, 94 : 1031 - 1054
  • [39] Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network
    Hu, Xiaolin
    Wang, Jun
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (06): : 1487 - 1499
  • [40] SELF-ADAPTIVE INERTIAL SHRINKING PROJECTION ALGORITHMS FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES
    Tan, Bing
    Cho, Sun Young
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (03) : 613 - 627