Robust surface structure analysis with reliable uncertainty estimation using the exchange Monte Carlo method

被引:8
|
作者
Nagai, Kazuki [1 ]
Anada, Masato [1 ]
Nakanishi-Ohno, Yoshinori [2 ,3 ,4 ]
Okada, Masato [5 ]
Wakabayashi, Yusuke [6 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[3] Univ Tokyo, Komaba Inst Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[6] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
关键词
surface diffraction; Bayesian inference; Monte Carlo; oxide films; epitaxial films;
D O I
10.1107/S1600576720001314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exchange Monte Carlo (MC) method is implemented in a surface structure refinement software using Bayesian inference. The MC calculation successfully reproduces crystal truncation rod intensity profiles from perovskite oxide ultrathin films, which involves about 60 structure parameters, starting from a simple model structure in which the ultrathin film and substrate surface have an atomic arrangement identical to the substrate bulk crystal. This shows great tolerance of the initial model in the surface structure search. The MC software is provided on the web. One of the advantages of using the MC method is the precise estimation of uncertainty of the obtained parameters. However, the parameter uncertainty is largely underestimated when one assumes that the diffraction measurements at each scattering vector are independent. The underestimation is caused by the correlation of experimental error. A means of estimation of uncertainty based on the effective number of observations is demonstrated.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [31] Estimation of primary pH measurement uncertainty using Monte Carlo simulation
    Damasceno, JC
    Borges, RMH
    Couto, PRG
    Ordine, AP
    Getrouw, MA
    Borges, PP
    Fraga, ICS
    METROLOGIA, 2006, 43 (03) : 306 - 310
  • [32] Estimation of Measurement Uncertainty of Factor Assays Using the Monte Carlo Simulation
    Lim, Yong Kwan
    Kweon, Oh Joo
    Lee, Mi-Kyung
    Kim, Hye Ryoun
    AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2021, 156 (05) : 717 - 721
  • [33] Uncertainty Estimation in Wind Power Forecasts Using Monte Carlo Simulations
    Singh, Someshwar
    Taylor, James H.
    2018 IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2018,
  • [34] Improving predictive uncertainty estimation using Dropout–Hamiltonian Monte Carlo
    Sergio Hernández
    Diego Vergara
    Matías Valdenegro-Toro
    Felipe Jorquera
    Soft Computing, 2020, 24 : 4307 - 4322
  • [35] Analysis of uncertainty in harmonic measurement based on Monte Carlo method
    Huang, De-Hua
    Zhang, Lu-Liang
    Zeng, Jiang
    Sun, Wei-Wei
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2012, 40 (20): : 62 - 67
  • [36] Application of Monte Carlo Method in Uncertainty Analysis of Mismatch Factor
    Ding, Na
    Cui, Xiaohai
    Li, Yong
    Yuan, Wenze
    2018 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2018), 2018,
  • [37] Using Monte Carlo method for uncertainty analysis of SWIR FPA spectral response measurement
    Deomidov, A.D.
    Polesskiy, A.V.
    Semenchenko, N.A.
    Tresalc, V.C.
    Smirnov, A.A.
    Applied Physics, 2015, 2015-January (04): : 94 - 101
  • [38] Model and distribution uncertainty in multivariate GARCH estimation: A Monte Carlo analysis
    Rossi, E.
    Spazzini, F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (11) : 2786 - 2800
  • [39] Variance Estimation in Monte Carlo Eigenvalue Simulations Using Spectral Analysis Method
    Jin, Lei
    Banerjee, Kaushik
    NUCLEAR SCIENCE AND ENGINEERING, 2018, 191 (03) : 248 - 261
  • [40] Application of the Monte Carlo Method for the Estimation of Uncertainty in Radiofrequency Field Spot Measurements
    Iakovidis, S.
    Apostolidis, C.
    Samaras, T.
    MEASUREMENT SCIENCE REVIEW, 2015, 15 (02): : 72 - 76