Improving predictive uncertainty estimation using Dropout–Hamiltonian Monte Carlo

被引:0
|
作者
Sergio Hernández
Diego Vergara
Matías Valdenegro-Toro
Felipe Jorquera
机构
[1] Universidad Católica del Maule,Centro de Innovación en Ingeniería Aplicada
[2] Robotics Innovation Center,German Research Center for Artificial Intelligence
来源
Soft Computing | 2020年 / 24卷
关键词
Bayesian learning; Hamiltonian Monte Carlo; Dropout; Transfer learning; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
Estimating predictive uncertainty is crucial for many computer vision tasks, from image classification to autonomous driving systems. Hamiltonian Monte Carlo (HMC) is an sampling method for performing Bayesian inference. On the other hand, Dropout regularization has been proposed as an approximate model averaging technique that tends to improve generalization in large-scale models such as deep neural networks. Although HMC provides convergence guarantees for most standard Bayesian models, it do not handle discrete parameters arising from Dropout regularization. In this paper, we present a robust methodology for improving predictive uncertainty in classification problems, based on Dropout and HMC. Even though Dropout induces a non-smooth energy function with no such convergence guarantees, the resulting discretization of the Hamiltonian proves empirical success. The proposed method allows to effectively estimate the predictive accuracy and to provide better generalization for difficult test examples.
引用
收藏
页码:4307 / 4322
页数:15
相关论文
共 50 条
  • [1] Improving predictive uncertainty estimation using Dropout-Hamiltonian Monte Carlo
    Hernandez, Sergio
    Vergara, Diego
    Valdenegro-Toro, Matias
    Jorquera, Felipe
    [J]. SOFT COMPUTING, 2020, 24 (06) : 4307 - 4322
  • [2] Monte Carlo Dropout for Uncertainty Estimation and Motor Imagery Classification
    Milanes-Hermosilla, Daily
    Codorniu, Rafael Trujillo
    Lopez-Baracaldo, Rene
    Sagaro-Zamora, Roberto
    Delisle-Rodriguez, Denis
    Villarejo-Mayor, John Jairo
    Nunez-Alvarez, Jose Ricardo
    [J]. SENSORS, 2021, 21 (21)
  • [3] Addressing model uncertainty in probabilistic forecasting using Monte Carlo dropout
    Serpell, Cristian
    Araya, Ignacio A.
    Valle, Carlos
    Allende, Hector
    [J]. INTELLIGENT DATA ANALYSIS, 2020, 24 (S1) : S185 - S205
  • [4] Uncertainty estimation in the classification of histopathological images with HER2 overexpression using Monte Carlo Dropout
    Borquez, Sebastian
    Pezoa, Raquel
    Salinas, Luis
    Torres, Claudio E.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85
  • [5] Improving Reliability of Object Detection for Lunar Craters Using Monte Carlo Dropout
    Myojin, Tomoyuki
    Hashimoto, Shintaro
    Mori, Kenji
    Sugawara, Keisuke
    Ishihama, Naoki
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: IMAGE PROCESSING, PT III, 2019, 11729 : 68 - 80
  • [6] Uncertainty Estimation via Monte Carlo Dropout in CNN-Based mmWave MIMO Localization
    Sadr, Mohammad Amin Maleki
    Gante, Joao
    Champagne, Benoit
    Falcao, Gabriel
    Sousa, Leonel
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 269 - 273
  • [7] Monte Carlo Dropout Ensembles for Robust Illumination Estimation
    Laakom, Firas
    Raitoharju, Jenni
    Iosifidis, Alexandros
    Nikkanen, Jarno
    Gabbouj, Moncef
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [8] Bayesian Estimation of Simultaneous Regression Quantiles Using Hamiltonian Monte Carlo
    Hachem, Hassan
    Abboud, Candy
    [J]. ALGORITHMS, 2024, 17 (06)
  • [9] Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo
    Monnahan, Cole C.
    Thorson, James T.
    Branch, Trevor A.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (03): : 339 - 348
  • [10] Assessing the uncertainty of deep learning soil spectral models using Monte Carlo dropout
    Padarian, J.
    Minasny, B.
    McBratney, A. B.
    [J]. GEODERMA, 2022, 425