Robust surface structure analysis with reliable uncertainty estimation using the exchange Monte Carlo method

被引:8
|
作者
Nagai, Kazuki [1 ]
Anada, Masato [1 ]
Nakanishi-Ohno, Yoshinori [2 ,3 ,4 ]
Okada, Masato [5 ]
Wakabayashi, Yusuke [6 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[2] Univ Tokyo, Grad Sch Arts & Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[3] Univ Tokyo, Komaba Inst Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan
[4] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[6] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi 9808578, Japan
关键词
surface diffraction; Bayesian inference; Monte Carlo; oxide films; epitaxial films;
D O I
10.1107/S1600576720001314
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exchange Monte Carlo (MC) method is implemented in a surface structure refinement software using Bayesian inference. The MC calculation successfully reproduces crystal truncation rod intensity profiles from perovskite oxide ultrathin films, which involves about 60 structure parameters, starting from a simple model structure in which the ultrathin film and substrate surface have an atomic arrangement identical to the substrate bulk crystal. This shows great tolerance of the initial model in the surface structure search. The MC software is provided on the web. One of the advantages of using the MC method is the precise estimation of uncertainty of the obtained parameters. However, the parameter uncertainty is largely underestimated when one assumes that the diffraction measurements at each scattering vector are independent. The underestimation is caused by the correlation of experimental error. A means of estimation of uncertainty based on the effective number of observations is demonstrated.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [41] A practically oriented, efficient alternative to the Monte Carlo method for measurement uncertainty estimation
    Degenhardt, Johannes
    Tutsch, Rainer
    Hu, Xiukun
    Dai, Gaoliang
    METROLOGIA, 2025, 62 (02)
  • [42] Estimation of Ultrasonic Beam Parameters Uncertainty from NDT Immersion Probes Using Monte Carlo Method
    Alvarenga, A. V.
    Silva, C. E. R.
    Costa-Felix, R. P. B.
    INTERNATIONAL CONGRESS ON ULTRASONICS (GDANSK 2011), 2012, 1433 : 656 - 659
  • [43] Estimation of the uncertainty of indirect measurements from the propagation of distributions by using the Monte-Carlo method:: An overview
    Herrador, MA
    Asuero, AG
    González, AG
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 79 (1-2) : 115 - 122
  • [44] Robust design of a breast scintigraphy collimator using Monte Carlo simulation and response surface method
    Balta, S.
    Guvenis, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2007, 34 : S165 - S165
  • [45] A proposal on accuracy estimation method for the sampling-based uncertainty analysis with Monte Carlo simulation technique
    Kim, Song Hyun
    Song, Myung Sub
    Sun, Gwang Min
    Shin, Chang Ho
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2016, 53 (02) : 295 - 301
  • [46] Use of the Monte Carlo method for the estimation of measurement uncertainty in chemical analysis systems with intensive mathematical treatment
    A. Fuentes-García
    J. Jiménez-Chacón
    M. Alvarez-Prieto
    Accreditation and Quality Assurance, 2024, 29 : 87 - 102
  • [47] Use of the Monte Carlo method for the estimation of measurement uncertainty in chemical analysis systems with intensive mathematical treatment
    Fuentes-Garcia, A.
    Jimenez-Chacon, J.
    Alvarez-Prieto, M.
    ACCREDITATION AND QUALITY ASSURANCE, 2024, 29 (02) : 87 - 102
  • [48] Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods
    Tomassini, Lorenzo
    Reichert, Peter
    Knutti, Reto
    Stocker, Thomas F.
    Borsuk, Mark E.
    JOURNAL OF CLIMATE, 2007, 20 (07) : 1239 - 1254
  • [49] Parallel Monte Carlo for entropy robust estimation
    Popkov Y.S.
    Popkov A.Y.
    Darkhovsky B.S.
    Mathematical Models and Computer Simulations, 2016, 8 (1) : 27 - 39
  • [50] Uncertainty Analysis in Tunnel Deformation Using Monte Carlo Simulation
    Sinha, Puran
    Ramana, G. V.
    JOURNAL OF STRUCTURAL DESIGN AND CONSTRUCTION PRACTICE, 2025, 30 (01):