Semiparametric Latent Variable Models With Bayesian P-Splines

被引:42
|
作者
Song, Xin-Yuan [1 ]
Lu, Zhao-Hua [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
关键词
MCMC algorithm; Natural cubic spline; Semiparametric models;
D O I
10.1198/jcgs.2010.09094
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article aims to develop a semiparametric latent variable model, in which outcome latent variables are related to explanatory latent variables and covariates through an additive structural equation formulated by a series of unspecified smooth functions. The Bayesian P-splines approach, together with a Markov chain Monte Carlo algorithm, is proposed to estimate smooth functions, unknown parameters, and latent variables in the model. The performance of the developed methodology is demonstrated by a simulation study. An illustrative example in analyzing bone mineral density in older men is provided. An Appendix which includes technical details of the proposed MCMC algorithm and an R code in implementing the algorithm are available as the online supplemental materials.
引用
收藏
页码:590 / 608
页数:19
相关论文
共 50 条
  • [41] Spatially adaptive Bayesian penalized regression splines (P-splines) (vol 14, pg 378, 2005)
    Baladandayuthapani, V
    Mallick, B. K.
    Carroll, R. J.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (02) : 515 - 515
  • [42] Non-parametric regression on compositional covariates using Bayesian P-splines
    Francesca Bruno
    Fedele Greco
    Massimo Ventrucci
    [J]. Statistical Methods & Applications, 2016, 25 : 75 - 88
  • [43] Non-parametric regression on compositional covariates using Bayesian P-splines
    Bruno, Francesca
    Greco, Fedele
    Ventrucci, Massimo
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2016, 25 (01): : 75 - 88
  • [44] Practical Smoothing: The Joys of P-splines
    Podgorski, Krzysztof
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2022, 90 (01) : 191 - 192
  • [45] Bayesian estimation on semiparametric models with shape restricted B-splines
    Ding, Jianhua
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (05) : 1315 - 1325
  • [46] Boosting additive models using component-wise P-Splines
    Schmid, Matthias
    Hothorn, Torsten
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) : 298 - 311
  • [47] Practical Smoothing: The Joys of P-splines
    Podgorski, Krzysztof
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2022,
  • [48] P-SPLINES USING DERIVATIVE INFORMATION
    Calderon, Christopher P.
    Martinez, Josue G.
    Carroll, Raymond J.
    Sorensen, Danny C.
    [J]. MULTISCALE MODELING & SIMULATION, 2010, 8 (04): : 1562 - 1580
  • [49] Semiparametric estimation of latent variable asset pricing models
    Dalderop, Jeroen
    [J]. JOURNAL OF ECONOMETRICS, 2023, 236 (01)
  • [50] Bayesian Analysis of Semiparametric Hidden Markov Models With Latent Variables
    Song, Xinyuan
    Kang, Kai
    Ouyang, Ming
    Jiang, Xuejun
    Cai, Jingheng
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (01) : 1 - 20