Semiparametric Latent Variable Models With Bayesian P-Splines

被引:42
|
作者
Song, Xin-Yuan [1 ]
Lu, Zhao-Hua [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
关键词
MCMC algorithm; Natural cubic spline; Semiparametric models;
D O I
10.1198/jcgs.2010.09094
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article aims to develop a semiparametric latent variable model, in which outcome latent variables are related to explanatory latent variables and covariates through an additive structural equation formulated by a series of unspecified smooth functions. The Bayesian P-splines approach, together with a Markov chain Monte Carlo algorithm, is proposed to estimate smooth functions, unknown parameters, and latent variables in the model. The performance of the developed methodology is demonstrated by a simulation study. An illustrative example in analyzing bone mineral density in older men is provided. An Appendix which includes technical details of the proposed MCMC algorithm and an R code in implementing the algorithm are available as the online supplemental materials.
引用
收藏
页码:590 / 608
页数:19
相关论文
共 50 条
  • [31] Nonparametric inference in hidden Markov models using P-splines
    Langrock, Roland
    Kneib, Thomas
    Sohn, Alexander
    DeRuiter, Stacy L.
    [J]. BIOMETRICS, 2015, 71 (02) : 520 - 528
  • [32] P-splines quantile regression estimation in varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    [J]. TEST, 2014, 23 (01) : 153 - 194
  • [33] P-splines quantile regression estimation in varying coefficient models
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    [J]. TEST, 2014, 23 : 153 - 194
  • [34] Adaptive Bayesian regression splines in semiparametric generalized linear models
    Biller, C
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (01) : 122 - 140
  • [35] Twenty years of P-splines
    Eilers, Paul H. C.
    Marx, Brian D.
    Durban, Maria
    [J]. SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2015, 39 (02) : 149 - 186
  • [36] LIMITS OF HK,P-SPLINES
    CHUI, CK
    SMITH, PW
    WARD, JD
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (03) : 563 - 565
  • [37] Locally adaptive Bayesian P-splines with a Normal-Exponential-Gamma prior
    Scheipl, Fabian
    Kneib, Thomas
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3533 - 3552
  • [38] Bayesian Semiparametric Structural Equation Models with Latent Variables
    Mingan Yang
    David B. Dunson
    [J]. Psychometrika, 2010, 75 : 675 - 693
  • [39] Bayesian Semiparametric Structural Equation Models with Latent Variables
    Yang, Mingan
    Dunson, David B.
    [J]. PSYCHOMETRIKA, 2010, 75 (04) : 675 - 693
  • [40] Semiparametric Bayesian latent variable regression for skewed multivariate data
    Bhingare, Apurva
    Sinha, Debajyoti
    Pati, Debdeep
    Bandyopadhyay, Dipankar
    Lipsitz, Stuart R.
    [J]. BIOMETRICS, 2019, 75 (02) : 528 - 538