Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In this article, we propose a broad class of semiparametric Bayesian SEMs, which allow mixed categorical and continuous manifest variables while also allowing the latent variables to have unknown distributions. In order to include typical identifiability restrictions on the latent variable distributions, we rely on centered Dirichlet process (CDP) and CDP mixture (CDPM) models. The CDP will induce a latent class model with an unknown number of classes, while the CDPM will induce a latent trait model with unknown densities for the latent traits. A simple and efficient Markov chain Monte Carlo algorithm is developed for posterior computation, and the methods are illustrated using simulated examples, and several applications.
机构:
Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
Song, Xin-Yuan
Pan, Jun-Hao
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Psychol, Guangzhou 510275, Guangdong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
Pan, Jun-Hao
Kwok, Timothy
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Prince Wales Hosp, Dept Med & Therapeut, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
Kwok, Timothy
Vandenput, Liesbeth
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gothenburg, Sahlgrenska Univ Hosp, Dept Internal Med, Gothenburg, SwedenChinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
Vandenput, Liesbeth
Ohlsson, Claes
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gothenburg, Sahlgrenska Univ Hosp, Dept Internal Med, Gothenburg, SwedenChinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
Ohlsson, Claes
Leung, Ping-Chung
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Prince Wales Hosp, Dept Med & Therapeut, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
机构:
Chinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
Ouyang, Ming
Yan, Xiaodong
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Sch Math & Stat, Kunming, Yunnan, Peoples R ChinaChinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
Yan, Xiaodong
Chen, Ji
论文数: 0引用数: 0
h-index: 0
机构:
Sager Inst, Div Biostat, London, EnglandChinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
Chen, Ji
论文数: 引用数:
h-index:
机构:
Tang, Niansheng
Song, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Shenzhen Res Inst, Shatin, Hong Kong, Peoples R China
机构:
Chinese Univ Hong Kong, Shenzhen Reseach Inst, Hong Kong, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Shenzhen Reseach Inst, Hong Kong, Hong Kong, Peoples R China
Ouyang, Ming
Wang, Xiaoqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Shenzhen Reseach Inst, Hong Kong, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Shenzhen Reseach Inst, Hong Kong, Hong Kong, Peoples R China
Wang, Xiaoqing
Wang, Chunjie
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Jilin, Peoples R ChinaChinese Univ Hong Kong, Shenzhen Reseach Inst, Hong Kong, Hong Kong, Peoples R China
Wang, Chunjie
Song, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Shenzhen Reseach Inst, Hong Kong, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Shenzhen Reseach Inst, Hong Kong, Hong Kong, Peoples R China