Bayesian Semiparametric Structural Equation Models with Latent Variables

被引:57
|
作者
Yang, Mingan [1 ]
Dunson, David B. [2 ]
机构
[1] St Louis Univ, Sch Publ Hlth, St Louis, MO 63104 USA
[2] Duke Univ, Durham, NC 27706 USA
基金
美国国家卫生研究院;
关键词
Dirichlet process; factor analysis; latent class; latent trait; mixture model; nonparametric Bayes; parameter expansion; FACTOR ANALYZERS; PARAMETER EXPANSION; HIERARCHICAL-MODELS; PRIOR DISTRIBUTIONS; MIXTURES; PRIORS; HETEROGENEITY; EXTENSION; INFERENCE;
D O I
10.1007/s11336-010-9174-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In this article, we propose a broad class of semiparametric Bayesian SEMs, which allow mixed categorical and continuous manifest variables while also allowing the latent variables to have unknown distributions. In order to include typical identifiability restrictions on the latent variable distributions, we rely on centered Dirichlet process (CDP) and CDP mixture (CDPM) models. The CDP will induce a latent class model with an unknown number of classes, while the CDPM will induce a latent trait model with unknown densities for the latent traits. A simple and efficient Markov chain Monte Carlo algorithm is developed for posterior computation, and the methods are illustrated using simulated examples, and several applications.
引用
收藏
页码:675 / 693
页数:19
相关论文
共 50 条
  • [1] Bayesian Semiparametric Structural Equation Models with Latent Variables
    Mingan Yang
    David B. Dunson
    [J]. Psychometrika, 2010, 75 : 675 - 693
  • [2] Bayesian analysis of structural equation models with nonlinear covariates and latent variables
    Song, Xin-Yuan
    Lee, Sik-Yum
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2006, 41 (03) : 337 - 365
  • [3] Bayesian Lasso for Semiparametric Structural Equation Models
    Guo, Ruixin
    Zhu, Hongtu
    Chow, Sy-Miin
    Ibrahim, Joseph G.
    [J]. BIOMETRICS, 2012, 68 (02) : 567 - 577
  • [4] A semiparametric Bayesian approach for structural equation models
    Song, Xin-Yuan
    Pan, Jun-Hao
    Kwok, Timothy
    Vandenput, Liesbeth
    Ohlsson, Claes
    Leung, Ping-Chung
    [J]. BIOMETRICAL JOURNAL, 2010, 52 (03) : 314 - 332
  • [5] Bayesian Analysis of Semiparametric Hidden Markov Models With Latent Variables
    Song, Xinyuan
    Kang, Kai
    Ouyang, Ming
    Jiang, Xuejun
    Cai, Jingheng
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (01) : 1 - 20
  • [6] Bayesian semiparametric analysis of structural equation models with mixed continuous and unordered categorical variables
    Song, Xin-Yuan
    Xia, Ye-Mao
    Lee, Sik-Yum
    [J]. STATISTICS IN MEDICINE, 2009, 28 (17) : 2253 - 2276
  • [7] Bayesian local influence of semiparametric structural equation models
    Ouyang, Ming
    Yan, Xiaodong
    Chen, Ji
    Tang, Niansheng
    Song, Xinyuan
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 111 : 102 - 115
  • [8] Interactions of Latent Variables in Structural Equation Models
    Bollen, Kenneth A.
    Paxton, Pamela
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 1998, 5 (03) : 267 - 293
  • [9] Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables
    Lee, Sik-Yum
    Song, Xin-Yuan
    Tang, Nian-Sheng
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2007, 14 (03) : 404 - 434
  • [10] Bayesian semiparametric failure time models for multivariate censored data with latent variables
    Ouyang, Ming
    Wang, Xiaoqing
    Wang, Chunjie
    Song, Xinyuan
    [J]. STATISTICS IN MEDICINE, 2018, 37 (28) : 4279 - 4297