Discriminative Regularization with Conditional Generative Adversarial Nets for Semi-Supervised Learning

被引:0
|
作者
Xie, Qiangian [1 ]
Peng, Min [1 ]
Huang, Jimin [1 ]
Wang, Bin [2 ]
Wang, Hua [3 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan, Peoples R China
[2] Xiaomi Inc, Beijing, Peoples R China
[3] Victoria Univ, Ctr Appl Informat, Melbourne, Vic, Australia
基金
美国国家科学基金会; 国家重点研发计划;
关键词
D O I
10.1109/ijcnn.2019.8851712
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing generative adversarial networks (GANs) with manifold regularization for semi-supervised learning (SSL) have shown promising performance in image generation and semi-supervised learning (SSL), which penalize the smoothness of classifier over data manifold based on the smoothness assumption. However, the smoothness assumption is valid for data points in high density region while not hold for data points in low density region, thus they tend to misclassify boundary instances in low density region. In this paper, we propose a novel discriminative regularization method for semi-supervised learning with conditional generative adversarial nets (CGANs). In our method, the discriminative information from class conditional data distribution captured by CGANs is utilized to improve the discrimination of classifier. Different from regular manifold regularization, the discriminative regularization encourages the classifier invariance to local perturbations on the sub-manifold of each cluster, and distinct classification outputs for data points in different clusters. Moreover, our method can be easily implemented via the stochastic approximation without constructing the Laplacian graph or computing the Jacobian of classifier explicitly. Experimental results on benchmark datasets show that our method can achieve competitive performance against previous advanced methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Semi-Supervised Classification with Hybrid Generative/Discriminative Methods
    Druck, Gregory
    Pal, Chris
    Zhu, Xiaojin
    McCallum, Andrew
    KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, : 280 - +
  • [32] A hybrid generative/discriminative method for semi-supervised classification
    Jiang, Zhen
    Zhang, Shiyong
    Zeng, Jianping
    KNOWLEDGE-BASED SYSTEMS, 2013, 37 : 137 - 145
  • [33] Adversarial Dropout for Supervised and Semi-Supervised Learning
    Park, Sungrae
    Park, JunKeon
    Shin, Su-Jin
    Moon, Il-Chul
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3917 - 3924
  • [34] Contrastive Regularization for Semi-Supervised Learning
    Lee, Doyup
    Kim, Sungwoong
    Kim, Ildoo
    Cheon, Yeongjae
    Cho, Minsu
    Han, Wook-Shin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3910 - 3919
  • [35] Adversarial Transformations for Semi-Supervised Learning
    Suzuki, Teppei
    Sato, Ikuro
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5916 - 5923
  • [36] Semi-supervised Generative Adversarial Networks Based on Scalable Support Vector Machines and Manifold Regularization
    Tang, Xianlun
    Yu, Xinxian
    Xu, Jin
    Chen, Yingjie
    Wang, Runzhu
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4264 - 4269
  • [37] Unbiased generative semi-supervised learning
    1600, Microtome Publishing (15):
  • [38] Unbiased Generative Semi-Supervised Learning
    Fox-Roberts, Patrick
    Rosten, Edward
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 367 - 443
  • [39] Semi-supervised Seizure Prediction with Generative Adversarial Networks
    Nhan Duy Truong
    Zhou, Luping
    Kavehei, Omid
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2369 - 2372
  • [40] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249