Semi-supervised Seizure Prediction with Generative Adversarial Networks

被引:0
|
作者
Nhan Duy Truong [1 ]
Zhou, Luping [1 ]
Kavehei, Omid [1 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
关键词
seizure prediction; adversarial networks; convolutional neural network; machine learning; iEEG; sEEG;
D O I
10.1109/embc.2019.8857755
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Many outstanding studies have reported promising results in seizure prediction that is considered one of the most challenging predictive data analysis. This is mainly because electroencephalogram (EEG) bio-signal intensity is very small, in 1V range, and there are significant sensing difficulties given physiological and non-physiological artifacts. In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which are more accessible. We also suggest the use of data fusion to further improve the seizure prediction accuracy. Data fusion in our vision includes EEG signals, cardiogram signals, body temperature and time. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised seizure prediction method achieves area under the operating characteristic curve (AUC) of 77.68% and 75.47% for the CHBMIT scalp EEG dataset and the Freiburg Hospital intracranial EEG dataset, respectively. Unsupervised training without the need of labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient.
引用
收藏
页码:2369 / 2372
页数:4
相关论文
共 50 条
  • [1] Semi-Supervised Seizure Prediction Model Combining Generative Adversarial Networks and Long Short-Term Memory Networks
    Yang, Xiaoli
    Liu, Lipei
    Li, Zhenwei
    Xia, Yuxin
    Fan, Zhipeng
    Zhou, Jiayi
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [2] Semi-Supervised Dose Prediction with Generative Adversarial Learning
    Lam, D.
    Sun, B.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E418 - E418
  • [3] Semi-supervised Learning Using Generative Adversarial Networks
    Chang, Chuan-Yu
    Chen, Tzu-Yang
    Chung, Pau-Choo
    [J]. 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 892 - 896
  • [4] Semi-Supervised Learning with Coevolutionary Generative Adversarial Networks
    Toutouh, Jamal
    Nalluru, Subhash
    Hemberg, Erik
    O'Reilly, Una-May
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 568 - 576
  • [5] Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks
    Lai, Wei-Sheng
    Huang, Jia-Bin
    Yang, Ming-Hsuan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [6] Survey on Implementations of Generative Adversarial Networks for Semi-Supervised Learning
    Sajun, Ali Reza
    Zualkernan, Imran
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [7] Semi-supervised Text Regression with Conditional Generative Adversarial Networks
    Li, Tao
    Liu, Xudong
    Su, Shihan
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5375 - 5377
  • [8] Generative Adversarial Training for Supervised and Semi-supervised Learning
    Wang, Xianmin
    Li, Jing
    Liu, Qi
    Zhao, Wenpeng
    Li, Zuoyong
    Wang, Wenhao
    [J]. FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [9] A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR PREDICTION OF GENETIC DISEASE OUTCOMES
    Davi, Caio
    Braga-Neto, Ulisses
    [J]. 2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [10] Pulsar candidate identification using semi-supervised generative adversarial networks
    Balakrishnan, Vishnu
    Champion, David
    Barr, Ewan
    Kramer, Michael
    Sengar, Rahul
    Bailes, Matthew
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (01) : 1180 - 1194