A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR PREDICTION OF GENETIC DISEASE OUTCOMES

被引:1
|
作者
Davi, Caio [1 ]
Braga-Neto, Ulisses [1 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
关键词
generative adversarial networks; genetics; semi-supervised learning; dengue fever; COHORT;
D O I
10.1109/MLSP52302.2021.9596351
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For most diseases, building large databases of labeled genetic data is an expensive and time-demanding task. To address this, we introduce genetic Generative Adversarial Networks (gGAN), a semi-supervised approach based on an innovative GAN architecture to create large synthetic genetic data sets starting with a small amount of labeled data and a large amount of unlabeled data. Our goal is to create a mechanism able to increase the sample size of the labeled data and generalize learning over different populations while keeping awareness of the quality of its own predictions. The proposed model achieved satisfactory results using real genetic data from different datasets and populations, in which the test populations may not have the same genetic profiles. The proposed model is self-aware and capable of determining whether a new genetic profile has enough compatibility with the data on which the network was trained and is thus suitable for prediction. The code and datasets used can be found at https://github.com/caio-davi/gGAN
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Semi-supervised Seizure Prediction with Generative Adversarial Networks
    Nhan Duy Truong
    Zhou, Luping
    Kavehei, Omid
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2369 - 2372
  • [2] Semi-Supervised Dose Prediction with Generative Adversarial Learning
    Lam, D.
    Sun, B.
    [J]. MEDICAL PHYSICS, 2019, 46 (06) : E418 - E418
  • [3] Semi-supervised generative adversarial network with guaranteed safeness for industrial quality prediction
    Zhang, Xu
    Zou, Yuanyuan
    Li, Shaoyuan
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2021, 153
  • [4] Patch attention network with generative adversarial model for semi-supervised binocular disparity prediction
    Zhibo Rao
    Mingyi He
    Yuchao Dai
    Zhelun Shen
    [J]. The Visual Computer, 2022, 38 : 77 - 93
  • [5] Patch attention network with generative adversarial model for semi-supervised binocular disparity prediction
    Rao, Zhibo
    He, Mingyi
    Dai, Yuchao
    Shen, Zhelun
    [J]. VISUAL COMPUTER, 2022, 38 (01): : 77 - 93
  • [6] Semi-Supervised Generative Adversarial Network for Gene Expression Inference
    Dizaji, Kamran Ghasedi
    Wang, Xiaoqian
    Huang, Heng
    [J]. KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1435 - 1444
  • [7] GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Li, Chuchen
    Liu, Huafeng
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 303 - 306
  • [8] SVGAN: Semi-supervised Generative Adversarial Network for Image Captioning
    Zhang, Yi
    Zeng, Wei
    He, Gangqiang
    Liu, Yueyuan
    [J]. 2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 296 - 299
  • [9] Medical image segmentation with generative adversarial semi-supervised network
    Li, Chuchen
    Liu, Huafeng
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):
  • [10] Optimization of semi-supervised generative adversarial network models: a survey
    Ma, Yongqing
    Zheng, Yifeng
    Zhang, Wenjie
    Wei, Baoya
    Lin, Ziqiong
    Liu, Weiqiang
    Li, Zhehan
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2024,