Adversarial Dropout for Supervised and Semi-Supervised Learning

被引:0
|
作者
Park, Sungrae [1 ]
Park, JunKeon [1 ]
Shin, Su-Jin [1 ]
Moon, Il-Chul [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, Deajeon, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, training with adversarial examples, which are generated by adding a small but worst-case perturbation on input examples, has improved the generalization performance of neural networks. In contrast to the biased individual inputs to enhance the generality, this paper introduces adversarial dropout, which is a minimal set of dropouts that maximize the divergence between 1) the training supervision and 2) the outputs from the network with the dropouts. The identified adversarial dropouts are used to automatically reconfigure the neural network in the training process, and we demonstrated that the simultaneous training on the original and the reconfigured network improves the generalization performance of supervised and semi-supervised learning tasks on MNIST, SVHN, and CIFAR-10. We analyzed the trained model to find the performance improvement reasons. We found that adversarial dropout increases the sparsity of neural networks more than the standard dropout. Finally, we also proved that adversarial dropout is a regularization term with a rank-valued hyper parameter that is different from a continuous-valued parameter to specify the strength of the regularization.
引用
收藏
页码:3917 / 3924
页数:8
相关论文
共 50 条
  • [1] Generative Adversarial Training for Supervised and Semi-supervised Learning
    Wang, Xianmin
    Li, Jing
    Liu, Qi
    Zhao, Wenpeng
    Li, Zuoyong
    Wang, Wenhao
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [2] Manifold adversarial training for supervised and semi-supervised learning
    Zhang, Shufei
    Huang, Kaizhu
    Zhu, Jianke
    Liu, Yang
    NEURAL NETWORKS, 2021, 140 : 282 - 293
  • [3] Adversarial Transformations for Semi-Supervised Learning
    Suzuki, Teppei
    Sato, Ikuro
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5916 - 5923
  • [4] Semi-Supervised Learning using Adversarial Networks
    Tachibana, Ryosuke
    Matsubara, Takashi
    Uehara, Kuniaki
    2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2016, : 939 - 944
  • [5] MarginGAN: Adversarial Training in Semi-Supervised Learning
    Dong, Jinhao
    Lin, Tong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [6] Adversarial de-overlapping learning machines for supervised and semi-supervised learning
    Sun, Yichen
    Vong, Chi Man
    Wang, Shitong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, : 2249 - 2267
  • [7] Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
    Miyato, Takeru
    Maeda, Shin-Ichi
    Koyama, Masanori
    Ishii, Shin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (08) : 1979 - 1993
  • [8] Latent Space Virtual Adversarial Training for Supervised and Semi-Supervised Learning
    Osada, Genki
    Ahsan, Budrul
    Prasad Bora, Revoti
    Nishide, Takashi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (03) : 667 - 678
  • [9] Generating Adversarial Examples by Adversarial Networks for Semi-supervised Learning
    Ma, Yun
    Mao, Xudong
    Chen, Yangbin
    Li, Qing
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2019, 2019, 11881 : 115 - 129
  • [10] Adversarial Variational Embedding for Robust Semi-supervised Learning
    Zhang, Xiang
    Yao, Lina
    Yuan, Feng
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 139 - 147