MULTILEVEL MONTE CARLO METAMODELING

被引:0
|
作者
Rosenbaum, Imry [1 ]
Staum, Jeremy [1 ]
机构
[1] Northwestern Univ, McCormick Sch Engn, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multilevel Monte Carlo (MLMC) methods have been used by the information-based complexity community in order to improve the computational efficiency of parametric integration. We extend this approach by relaxing the assumptions on differentiability of the simulation output. Relaxing the assumption on the differentiability of the simulation output makes the MLMC method more widely applicable to stochastic simulation metamodeling problems in industrial engineering. The proposed scheme uses a sequential experiment design which allocates effort unevenly among design points in order to increase its efficiency. The procedure's efficiency is tested on an example of option pricing in the Black-Scholes model.
引用
下载
收藏
页码:509 / 520
页数:12
相关论文
共 50 条
  • [1] Multilevel Monte Carlo Metamodeling
    Rosenbaum, Imry
    Staum, Jeremy
    OPERATIONS RESEARCH, 2017, 65 (04) : 1062 - 1077
  • [2] Multilevel Monte Carlo methods
    Heinrich, S
    LARGE-SCALE SCIENTIFIC COMPUTING, 2001, 2179 : 58 - 67
  • [3] Multilevel Monte Carlo methods
    Giles, Michael B.
    ACTA NUMERICA, 2015, 24 : 259 - 328
  • [4] Multilevel Monte Carlo for Reliability Theory
    Aslett, Louis J. M.
    Nagapetyan, Tigran
    Vollmer, Sebastian J.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2017, 165 : 188 - 196
  • [5] Multilevel Monte Carlo path simulation
    Giles, Michael B.
    OPERATIONS RESEARCH, 2008, 56 (03) : 607 - 617
  • [6] MULTILEVEL MONTE CARLO FOR BASKET OPTIONS
    Giles, Michael B.
    PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 1263 - 1270
  • [7] Multilevel Markov Chain Monte Carlo
    Dodwell, T. J.
    Ketelsen, C.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM REVIEW, 2019, 61 (03) : 509 - 545
  • [8] ADAPTIVE MULTILEVEL MONTE CARLO FOR PROBABILITIES
    Haji-Ali, Abdul-Lateef
    Spence, Jonathan
    Teckentrup, Aretha L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 2125 - 2149
  • [9] On the effective dimension and multilevel Monte Carlo
    Kahale, Nabil
    OPERATIONS RESEARCH LETTERS, 2022, 50 (04) : 415 - 421
  • [10] Multilevel sequential Monte Carlo samplers
    Beskos, Alexandros
    Jasra, Ajay
    Law, Kody
    Tempone, Raul
    Zhou, Yan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (05) : 1417 - 1440