Codimension growth of central polynomials of Lie algebras

被引:0
|
作者
Giambruno, Antonio [1 ]
Zaicev, Mikhail [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119992, Russia
基金
俄罗斯科学基金会;
关键词
Central polynomial; polynomial identity; codimension; exponential growth; IDENTITIES;
D O I
10.1515/forum-2019-0130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like (dim L)(n).
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [41] PI-algebras and codimension growth
    Giambruno, A
    Zaicev, MV
    METHODS IN RING THEORY: PROCEEDINGS OF THE TRENTO CONFERENCE, 1998, 198 : 115 - 120
  • [42] Universal factorization algebras of polynomials represent Lie algebras of endomorphisms
    Behzad, Ommolbanin
    Nejad, Abbas Nasrollah
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (04)
  • [43] Codimension Growth of Algebras with Adjoint Unit
    Bezushchak O.E.
    Beljaev A.A.
    Zaicev M.V.
    Journal of Mathematical Sciences, 2015, 206 (5) : 462 - 473
  • [44] On algebras and superalgebras with linear codimension growth
    Giambruno, A
    La Mattina, D
    Misso, P
    GROUPS, RINGS AND GROUP RINGS, 2006, 248 : 173 - 182
  • [45] LIE-ALGEBRAS AND POLYNOMIALS IN ONE VARIABLE
    TURBINER, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (18): : L1087 - L1093
  • [46] BESSEL POLYNOMIALS, FROM VIEWPOINT OF LIE ALGEBRAS
    CHATTERJEA, SK
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (06): : 357 - +
  • [47] Symmetric Polynomials in the Free Metabelian Lie Algebras
    Drensky, Vesselin
    Findik, Sehmus
    Oguslu, Nazar Sahin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (05)
  • [48] Symmetric Polynomials in the Free Metabelian Lie Algebras
    Vesselin Drensky
    Şehmus Fındık
    Nazar Şahn Öüşlü
    Mediterranean Journal of Mathematics, 2020, 17
  • [50] On the codimension growth of simple color Lie superalgebras
    Pagon, Dusan
    Repovs, Dusan
    Zaicev, Mikhail
    JOURNAL OF LIE THEORY, 2012, 22 (02) : 465 - 479