Codimension growth of central polynomials of Lie algebras

被引:0
|
作者
Giambruno, Antonio [1 ]
Zaicev, Mikhail [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119992, Russia
基金
俄罗斯科学基金会;
关键词
Central polynomial; polynomial identity; codimension; exponential growth; IDENTITIES;
D O I
10.1515/forum-2019-0130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like (dim L)(n).
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [21] Banach Lie algebras with Lie subalgebras of finite codimension have Lie ideals
    Kissin, Edward
    Shulman, Victor S.
    Turovskii, Yurii V.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 603 - 626
  • [22] On algebras of polynomial codimension growth
    La Mattina D.
    São Paulo Journal of Mathematical Sciences, 2016, 10 (2) : 312 - 320
  • [23] Anomalies on codimension growth of algebras
    Giambruno, Antonio
    Zaicev, Mikhail
    FORUM MATHEMATICUM, 2016, 28 (04) : 649 - 656
  • [24] Banach Lie algebras with Lie subalgebras of finite codimension: Their invariant subspaces and Lie ideals
    Kissin, Edward
    Shulman, Victor S.
    Turovskii, Yurii V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (02) : 323 - 351
  • [25] SIMPLE LIE-ALGEBRAS WITH A SUBALGEBRA OF CODIMENSION ONE
    DZHUMADILDAEV, AS
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (01) : 215 - 216
  • [26] Algebras with superautomorphism: simple algebras and codimension growth
    Ioppolo, Antonio
    La Mattina, Daniela
    ISRAEL JOURNAL OF MATHEMATICS, 2025, 265 (01) : 479 - 500
  • [27] Central polynomials of graded algebras: Capturing their exponential growth
    La Mattina, Daniela
    Martino, Fabrizio
    Rizzo, Carla
    JOURNAL OF ALGEBRA, 2022, 600 : 45 - 70
  • [28] More on characteristic polynomials of Lie algebras
    Korkeathikhun, Korkeat
    Khuhirun, Borworn
    Sriwongsa, Songpon
    Wiboonton, Keng
    JOURNAL OF ALGEBRA, 2024, 643 : 294 - 310
  • [29] Determinants and characteristic polynomials of Lie algebras
    Hu, Zhiguang
    Zhang, Philip B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 426 - 439
  • [30] CENTRAL POLYNOMIALS FOR ALGEBRAS
    FORMANEK, EW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A6 - &