Codimension growth of central polynomials of Lie algebras

被引:0
|
作者
Giambruno, Antonio [1 ]
Zaicev, Mikhail [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119992, Russia
基金
俄罗斯科学基金会;
关键词
Central polynomial; polynomial identity; codimension; exponential growth; IDENTITIES;
D O I
10.1515/forum-2019-0130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic zero and let I be the T-ideal of polynomial identities of the adjoint representation of L. We prove that the number of multilinear central polynomials in n variables, linearly independent modulo I, grows exponentially like (dim L)(n).
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条