Optimal codomains for the Laplace operator and the product Laplace operator

被引:1
|
作者
Alvarez, Josefina [1 ]
Moyo, Lloyd Edgar S.
机构
[1] New Mexico State Univ, Dept Math, Las Cruces, NM 88003 USA
[2] Sul Ross State Univ, Dept Math, Alpine, TX 79832 USA
来源
关键词
s'-convolution; Laplace operator and product Laplace; operator; weighted distribution spaces;
D O I
10.1155/2007/257051
中图分类号
学科分类号
摘要
An optimal codomain for an operator P (a) with fundamental solution E, is a maximal space of distributions T for which it is possible to define the convolution E * T and thus to solve the equation P (0) S = T. We identify optimal codomains for the Laplace operator in the Euclidean case and for the product Laplace operator in the product domain case. The convolution is understood in the sense of the S'-convolution.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 50 条
  • [31] Derivation of the Pauli form of the Laplace operator
    Hermann, Ii.
    ZEITSCHRIFT FUR PHYSIK, 1935, 97 (9-10): : 667 - 668
  • [32] PROBLEMS WITH LAPLACE OPERATOR ON TOPOLOGICAL SURFACES
    Shalaginov, M. Y.
    Ivanov, M. G.
    Dolgopolov, M. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (02): : 243 - 250
  • [33] On the Laplace Operator Penalized by Mean Curvature
    Evans M. Harrell II
    Michael Loss
    Communications in Mathematical Physics, 1998, 195 : 643 - 650
  • [34] EXPANSION OF MAXIMUM PRINCIPLE FOR LAPLACE OPERATOR
    NATTERER, F
    WERNER, B
    NUMERISCHE MATHEMATIK, 1974, 22 (02) : 149 - 155
  • [35] THE COMMUTANT OF THE LAPLACE OPERATOR IN LP(R)
    RICKER, WJ
    MATHEMATISCHE NACHRICHTEN, 1990, 146 : 23 - 31
  • [36] On common zeros of eigenfunctions of the Laplace operator
    Dmitri Akhiezer
    Boris Kazarnovskii
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2017, 87 : 105 - 111
  • [37] Laplace–Beltrami Operator on Digital Surfaces
    Thomas Caissard
    David Coeurjolly
    Jacques-Olivier Lachaud
    Tristan Roussillon
    Journal of Mathematical Imaging and Vision, 2019, 61 : 359 - 379
  • [38] Spectrum of the Laplace operator on closed surfaces
    Popov, D. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2022, 77 (01) : 81 - 97
  • [39] REAL INTERPOLATION AND THE LAPLACE OPERATOR IN POLYGONS
    ADEYEYE, JO
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (19): : 979 - 982
  • [40] The Hyperbolic Laplace-Beltrami Operator
    Fraczek, Markus Szymon
    SELBERG ZETA FUNCTIONS AND TRANSFER OPERATORS: AN EXPERIMENTAL APPROACH TO SINGULAR PERTURBATIONS, 2017, 2139 : 87 - 127