On the Laplace Operator Penalized by Mean Curvature

被引:0
|
作者
Evans M. Harrell II
Michael Loss
机构
[1] School of Mathematics,
[2] Georgia Institute of Technology,undefined
[3] Atlanta GA 30332-0160,undefined
[4] USA.¶E-mail: harrell@math.gatech.edu; loss@math.gatech.edu,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let h = Σj=1d κj, where the κj are the principal curvatures of a d-dimensional hypersurface immersed in Rd+1, and let −Δ be the corresponding Laplace–Beltrami operator. We prove that the second eigenvalue of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ - \Delta - \frac{1}{d}{h^2}$\end{document} is strictly negative unless the surface is a sphere, in which case the second eigenvalue is zero. In particular this proves conjectures of Alikakos and Fusco.
引用
收藏
页码:643 / 650
页数:7
相关论文
共 50 条