Optimal codomains for the Laplace operator and the product Laplace operator

被引:1
|
作者
Alvarez, Josefina [1 ]
Moyo, Lloyd Edgar S.
机构
[1] New Mexico State Univ, Dept Math, Las Cruces, NM 88003 USA
[2] Sul Ross State Univ, Dept Math, Alpine, TX 79832 USA
来源
关键词
s'-convolution; Laplace operator and product Laplace; operator; weighted distribution spaces;
D O I
10.1155/2007/257051
中图分类号
学科分类号
摘要
An optimal codomain for an operator P (a) with fundamental solution E, is a maximal space of distributions T for which it is possible to define the convolution E * T and thus to solve the equation P (0) S = T. We identify optimal codomains for the Laplace operator in the Euclidean case and for the product Laplace operator in the product domain case. The convolution is understood in the sense of the S'-convolution.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 50 条
  • [41] Hyperbolic Laplace Operator and the Weinstein Equation in
    Eriksson, Sirkka-Liisa
    Orelma, Heikki
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (01) : 109 - 124
  • [42] On the Minimization of Dirichlet Eigenvalues of the Laplace Operator
    van den Berg, M.
    Iversen, M.
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 660 - 676
  • [43] CORRECT SINGULAR PERTURBATIONS OF THE LAPLACE OPERATOR
    Biyarov, B. N.
    Svistunov, D. L.
    Abdrasheva, G. K.
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (04): : 25 - 34
  • [44] Normalized System for the Super Laplace Operator
    Yuying Qiao
    Hongfen Yuan
    Heju Yang
    Advances in Applied Clifford Algebras, 2012, 22 : 1109 - 1128
  • [45] On the Minimization of Dirichlet Eigenvalues of the Laplace Operator
    M. van den Berg
    M. Iversen
    Journal of Geometric Analysis, 2013, 23 : 660 - 676
  • [46] On the spectral measure of the Laplace transform operator
    AlShuaibi, A
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1997, 22 (1A): : 87 - 97
  • [48] Differential Evolution with Laplace Mutation Operator
    Pant, Millie
    Thangaraj, Radha
    Abraham, Ajith
    Grosan, Crina
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 2841 - +
  • [49] A natural Finsler-Laplace operator
    Barthelme, Thomas
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 196 (01) : 375 - 412
  • [50] A note on the operator norm of the Laplace transformation
    Peachey, T. C.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (09) : 711 - 714