Finite groups all of whose abelian subgroups are QTI-subgroups

被引:8
|
作者
Qian, Guohua [1 ]
Tang, Feng [1 ]
机构
[1] Changshu Inst Technol, Dept Math, Jiangsu 215500, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite group; TI-subgroup;
D O I
10.1016/j.jalgebra.2008.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is called a QTI-subgroup if C-G(x) <= N-G(H) for any 1 not equal x epsilon H, and a group is called AQTI-group if all of its abelian subgroups are QTI-subgroups. In this paper, we obtain a classification of the finite AQTI-groups. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3605 / 3611
页数:7
相关论文
共 50 条
  • [31] Finite groups all of whose minimal subgroups are N E au-subgroups
    Li, Yonggang
    Zhong, Xianggui
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (04): : 501 - 509
  • [32] Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-Calabuig, V.
    Yi, X.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [33] FINITE GROUPS ALL OF WHOSE MAXIMAL SUBGROUPS ARE SB-GROUPS
    Guo, Pengfei
    Wang, Junxin
    Zhang, Hailiang
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 1135 - 1144
  • [34] FINITE GROUPS ALL OF WHOSE SECOND MAXIMAL SUBGROUPS ARE H*-GROUPS
    Zhong, Xianggui
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (04)
  • [35] FINITE GROUPS WHOSE ALL PROPER SUBGROUPS ARE GPST-GROUPS
    Guo, Pengfei
    Yang, Yue
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 600 - 606
  • [36] Finite groups whose all proper subgroups are C-groups
    Pengfei Guo
    Jianjun Liu
    [J]. Czechoslovak Mathematical Journal, 2018, 68 : 513 - 522
  • [37] Finite groups whose all proper subgroups are C-groups
    Guo, Pengfei
    Liu, Jianjun
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (02) : 513 - 522
  • [38] Groups whose subgroups are either abelian or pronormal
    Brescia, Mattia
    Ferrara, Maria
    Trombetti, Marco
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2023, 63 (03) : 471 - 500
  • [39] On Groups whose Subnormal Abelian Subgroups are Normal
    Kurdachenko, L. A.
    Otal, J.
    Subbotin, I. Ya
    [J]. ADVANCES IN GROUP THEORY AND APPLICATIONS, 2022, 14 : 67 - 94
  • [40] Finite groups whose all second maximal subgroups are cyclic
    Ma, Li
    Meng, Wei
    Ma, Wanqing
    [J]. OPEN MATHEMATICS, 2017, 15 : 611 - 615