On Groups whose Subnormal Abelian Subgroups are Normal

被引:0
|
作者
Kurdachenko, L. A. [1 ]
Otal, J. [2 ]
Subbotin, I. Ya [3 ]
机构
[1] Dnipro Natl Univ, Dept Algebra, Gagarin Prospect 70, UA-10 Dnipro, Ukraine
[2] Univ Zaragoza, Dept Matemat, Pedro Cerbuna 12, Zaragoza 50009, Spain
[3] Natl Univ, Dept Math, 5245 Pacific Concourse Dr, Los Angeles, CA 90045 USA
关键词
subnormal abelian subgroup; hyperabelian group; hyperabelian Lie algebra; abelian subideal; PERMUTABILITY; CRITERIA;
D O I
10.32037/agta-2022-012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current paper we study the groups, whose subnormal abelian subgroups are normal. We obtained a quite detailed description of such hyperabelian groups with a periodic Baer radical. The description of hyperabelian Lie algebras, whose abelian subideals are ideals, is also obtained.
引用
收藏
页码:67 / 94
页数:28
相关论文
共 50 条
  • [1] On the structure of groups whose non-abelian subgroups are subnormal
    Kurdachenko, Leonid A.
    Atlihan, Sevgi
    Semko, Nikolaj N.
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (12): : 1762 - 1771
  • [2] Groups whose subnormal subgroups are normal-by-finite
    Franciosi, S
    deGiovanni, F
    Newell, ML
    [J]. COMMUNICATIONS IN ALGEBRA, 1995, 23 (14) : 5483 - 5497
  • [3] Groups whose subnormal subgroups have finite normal oscillation
    Ferrara, Maria
    de Giovanni, Francesco
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (09) : 3986 - 3993
  • [4] Finite groups whose non-abelian self-centralizing subgroups are TI-subgroups or subnormal subgroups
    Sun, Yuqing
    Lu, Jiakuan
    Meng, Wei
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (03)
  • [5] ON SOLUBLE GROUPS WHOSE SUBNORMAL SUBGROUPS ARE INERT
    Dardano, Ulderico
    Rinauro, Silvana
    [J]. INTERNATIONAL JOURNAL OF GROUP THEORY, 2015, 4 (02) : 17 - 24
  • [6] GROUPS WHOSE SUBGROUPS ARE 2-SUBNORMAL
    STADELMANN, M
    [J]. ARCHIV DER MATHEMATIK, 1978, 30 (04) : 364 - 371
  • [7] SOLVABILITY OF GROUPS WHOSE SUBGROUPS ARE ALL SUBNORMAL
    MOHRES, W
    [J]. ARCHIV DER MATHEMATIK, 1990, 54 (03) : 232 - 235
  • [8] ON SUPERSOLVABLE GROUPS WHOSE MAXIMAL SUBGROUPS OF THE SYLOW SUBGROUPS ARE SUBNORMAL
    Guo, Pengfei
    Xiu, Xingqiang
    Xu, Guangjun
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 315 - 322
  • [9] HYPERCENTRAL TORSION GROUPS WHOSE SUBGROUPS ARE ALL SUBNORMAL
    MOHRES, W
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (01) : 147 - 157
  • [10] TORSION-GROUPS ALL OF WHOSE SUBGROUPS ARE SUBNORMAL
    MOHRES, W
    [J]. GEOMETRIAE DEDICATA, 1989, 31 (02) : 237 - 244