Jensen-Mercer Type Inequalities for Operator h-Convex Functions

被引:3
|
作者
Abbasi, Mostafa [1 ]
Morassaei, Ali [1 ]
Mirzapour, Farzollah [1 ]
机构
[1] Univ Zanjan, Fac Sci, Dept Math, Univ Blvd, Zanjan 4537138791, Iran
关键词
h-Convex function; Jensen-Mercer inequality; Operator inequality; Hilbert space;
D O I
10.1007/s41980-021-00652-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we state some characterizations of h-convex function defined on a convex set in a linear space. By doing so, we extend the Jensen-Mercer inequality for h-convex function. We present the concept of operator h-convex functions and give some operator versions of Jensen and Jensen-Mercer type inequalities for some classes of operator h-convex functions and unital positive linear maps. Finally, we introduce the complementary inequality of Jensen's inequality for h-convex functions.
引用
收藏
页码:2441 / 2462
页数:22
相关论文
共 50 条
  • [41] Fractional Jensen-Mercer Type Inequalities Involving Generalized Raina's Function and Applications
    Nonlaopon, Kamsing
    Awan, Muhammad Uzair
    Asif, Usama
    Javed, Muhammad Zakria
    Slimane, Ibrahim
    Kashuri, Artion
    SYMMETRY-BASEL, 2022, 14 (10):
  • [42] MORE ACCURATE CLASSES OF JENSEN-TYPE INEQUALITIES FOR CONVEX AND OPERATOR CONVEX FUNCTIONS
    Choi, Daeshik
    Krnic, Mario
    Pecaric, Josip
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (02): : 301 - 322
  • [43] Some Hermite–Hadamard Type Inequalities for h-Convex Functions and their Applications
    Hatice Öğülmüş
    Mehmet Zeki Sarıkaya
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 813 - 819
  • [44] Milne-type inequalities for third differentiable and h-convex functions
    Benaissa, Bouharket
    Budak, Huseyin
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [45] ON SOME INEQUALITIES OF SIMPSON'S TYPE VIA h-CONVEX FUNCTIONS
    Tunc, Mevlut
    Yildiz, Cetin
    Ekinci, Alper
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 309 - 317
  • [46] ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-CONVEX FUNCTIONS
    Sarikaya, M. Z.
    Set, E.
    Ozdemir, M. E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (02): : 265 - 272
  • [47] Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator
    Chen, Lanxin
    Zhang, Junxian
    Saleem, Muhammad Shoaib
    Ahmed, Imran
    Waheed, Shumaila
    Pan, Lishuang
    AIMS MATHEMATICS, 2021, 6 (06): : 6377 - 6389
  • [48] Ostrowski type inequalities for functions whose derivatives are h-convex in absolute value
    Dragomir, S. S.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2015, 19 (02): : 133 - 148
  • [49] Some New Improvements for Fractional Hermite-Hadamard Inequalities by Jensen-Mercer Inequalities
    Alshehri, Maryam Gharamah Ali
    Hyder, Abd-Allah
    Budak, Huseyin
    Barakat, Mohamed A.
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [50] Jensen–Mercer inequality for GA-convex functions and some related inequalities
    İmdat İşcan
    Journal of Inequalities and Applications, 2020