Jensen-Mercer Type Inequalities for Operator h-Convex Functions

被引:3
|
作者
Abbasi, Mostafa [1 ]
Morassaei, Ali [1 ]
Mirzapour, Farzollah [1 ]
机构
[1] Univ Zanjan, Fac Sci, Dept Math, Univ Blvd, Zanjan 4537138791, Iran
关键词
h-Convex function; Jensen-Mercer inequality; Operator inequality; Hilbert space;
D O I
10.1007/s41980-021-00652-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we state some characterizations of h-convex function defined on a convex set in a linear space. By doing so, we extend the Jensen-Mercer inequality for h-convex function. We present the concept of operator h-convex functions and give some operator versions of Jensen and Jensen-Mercer type inequalities for some classes of operator h-convex functions and unital positive linear maps. Finally, we introduce the complementary inequality of Jensen's inequality for h-convex functions.
引用
收藏
页码:2441 / 2462
页数:22
相关论文
共 50 条
  • [31] Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator
    Liu, Jia-Bao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Aslam, Adnan
    Fahad, Asfand
    Soontharanon, Jarunee
    AIMS MATHEMATICS, 2022, 7 (02): : 2123 - 2140
  • [32] Trapezoidal type inequalities related to h-convex functions with applications
    Delavar, M. Rostamian
    Dragomir, S. S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1487 - 1498
  • [33] Some New Jensen-Mercer Type Integral Inequalities via Fractional Operators
    Bayraktar, Bahtiyar
    Korus, Peter
    Valdes, Juan Eduardo Napoles
    AXIOMS, 2023, 12 (06)
  • [34] Petrovic-Type Inequalities for Harmonic h-convex Functions
    Baloch, Imran Abbas
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [35] Trapezoidal type inequalities related to h-convex functions with applications
    M. Rostamian Delavar
    S. S. Dragomir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1487 - 1498
  • [36] SOME NOTE ON JENSEN-MERCER'S TYPE INEQUALITIES; EXTENSIONS AND REFINEMENTS WITH APPLICATIONS
    Horvath, Laszlo
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 1093 - 1094
  • [37] New Hadamard Type Inequalities for Modified h-Convex Functions
    Breaz, Daniel
    Yildiz, Cetin
    Cotirla, Luminita-Ioana
    Rahman, Gauhar
    Yergoz, Busra
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [38] On Some New Inequalities of Hadamard Type for h-Convex Functions
    Akdemir, Ahmet Ocak
    Set, Erhan
    Ozdemir, M. Emin
    Yildiz, Cetin
    FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012), 2012, 1470 : 35 - 38
  • [39] AN EXTENSION OF JENSEN-MERCER INEQUALITY FOR FUNCTIONS WITH NONDECREASING INCREMENTS
    Khan, Asif R.
    Khan, Inam Ullah
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (04): : 1 - 15
  • [40] INEQUALITIES VIA GENERALIZED h-CONVEX FUNCTIONS
    Noor, M. A.
    Noor, K., I
    Safdar, F.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (02): : 112 - 130