Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory

被引:19
|
作者
Okrugin, Boris M. [1 ,2 ]
Richter, Ralf P. [1 ,3 ,4 ]
Leermakers, Frans A. M. [5 ]
Neelov, Igor M. [7 ]
Borisov, Oleg, V [6 ,7 ,8 ]
Zhulina, Ekaterina B. [6 ,7 ]
机构
[1] CIC biomaGUNE, Biosurface Lab, Paseo Miramon 182, San Sebastian 20014, Spain
[2] St Petersburg State Univ, Dept Phys, St Petersburg 198904, Russia
[3] Univ Leeds, Fac Biol Sci, Fac Math & Phys Sci, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England
[5] Wageningen Univ, Phys Chem & Soft Matter, NL-6703 NB Wageningen, Netherlands
[6] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
[7] St Petersburg Natl Univ Informat Technol Mech & O, St Petersburg 197101, Russia
[8] UMR 5254 CNRS UPPA, Inst Sci Analyt & Phys Chim Environm Mat, Pau, France
基金
俄罗斯基础研究基金会; 欧洲研究理事会;
关键词
POLYMER BRUSH; GRAFTED POLYELECTROLYTES; PROJECTION DOMAINS; NF-M; NEUROFILAMENTS; CHAINS; LAYER; COPOLYMERS; NETWORKS; BEHAVIOR;
D O I
10.1039/c8sm01138a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two complementary self-consistent field theoretical approaches are used to analyze the equilibrium structure of binary and ternary brushes of polyions with different degrees of polymerization. Stratification in binary brushes is predicted: the shorter chains are entirely embedded in the proximal sublayer depleted of end-points of longer chains while the peripheral sublayer contains exclusively terminal segments of longer chains. The boundary between sublayers is enriched with counterions that neutralize the residual charge of the proximal sublayer. These analytical predictions for binary brushes are confirmed and extended to ternary brushes using the numerical Scheutjens-Fleer approach.
引用
收藏
页码:6230 / 6242
页数:13
相关论文
共 50 条
  • [41] Dendritic versus Linear Polymer Brushes Self-Consistent Field Modeling, Scaling Theory, and Experiments
    Polotsky, Alexey A.
    Gillich, Torben
    Borisov, Oleg V.
    Leermakers, Frans A. M.
    Textor, Marcus
    Birshtein, Tatiana M.
    MACROMOLECULES, 2010, 43 (22) : 9555 - 9566
  • [42] Brushes and lamellar mesophases of comb-shaped (co)polymers: a self-consistent field theory
    Mikhailov, Ivan V.
    Zhulina, Ekaterina B.
    Borisov, Oleg V.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (40) : 23385 - 23398
  • [43] Self-Organization of Polyurethane Pre-Polymers as Studied by Self-Consistent Field Theory
    Li, Feng
    Tuinier, Remco
    van Casteren, Ilse
    Tennebroek, Ronald
    Overbeek, Ad
    Leermakers, Frans A. M.
    MACROMOLECULAR THEORY AND SIMULATIONS, 2016, 25 (01) : 16 - 27
  • [44] A self-consistent mean-field model for polyelectrolyte gels
    Rud, Oleg
    Richter, Tobias
    Borisov, Oleg
    Holm, Christian
    Kosovan, Peter
    SOFT MATTER, 2017, 13 (18) : 3264 - 3274
  • [45] Self-Consistent Field Theory Study of the Effect of Grafting Density on the Height of a Weak Polyelectrolyte Brush
    Witte, Kevin N.
    Kim, Sangtae
    Won, You-Yeon
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (32): : 11076 - 11084
  • [46] Microphase Segregation of Diblock Copolymers Studied by the Self-Consistent Field Theory of Scheutjens and Fleer
    Mocan, Merve
    Kamperman, Marleen
    Leermakers, Frans A. M.
    POLYMERS, 2018, 10 (01):
  • [47] THE VISCOELASTIC PROPERTIES OF ORDERED LATTICES - A SELF-CONSISTENT FIELD-THEORY
    RUSSEL, WB
    BENZING, DW
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1981, 83 (01) : 163 - 177
  • [48] Self-consistent field theory for obligatory coassembly
    Voets, I. K.
    Leermakers, F. A. M.
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [49] SELF-CONSISTENT FIELD THEORY OF NUCLEAR SHAPES
    BARANGER, M
    PHYSICAL REVIEW, 1961, 122 (03): : 992 - &
  • [50] Self-consistent-field analysis of mixed polyelectrolyte and neutral polymer brushes
    Witte, Kevin N.
    Won, You-Yeon
    MACROMOLECULES, 2006, 39 (22) : 7757 - 7768