Structure and properties of polydisperse polyelectrolyte brushes studied by self-consistent field theory

被引:19
|
作者
Okrugin, Boris M. [1 ,2 ]
Richter, Ralf P. [1 ,3 ,4 ]
Leermakers, Frans A. M. [5 ]
Neelov, Igor M. [7 ]
Borisov, Oleg, V [6 ,7 ,8 ]
Zhulina, Ekaterina B. [6 ,7 ]
机构
[1] CIC biomaGUNE, Biosurface Lab, Paseo Miramon 182, San Sebastian 20014, Spain
[2] St Petersburg State Univ, Dept Phys, St Petersburg 198904, Russia
[3] Univ Leeds, Fac Biol Sci, Fac Math & Phys Sci, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England
[5] Wageningen Univ, Phys Chem & Soft Matter, NL-6703 NB Wageningen, Netherlands
[6] Russian Acad Sci, Inst Macromol Cpds, St Petersburg 199004, Russia
[7] St Petersburg Natl Univ Informat Technol Mech & O, St Petersburg 197101, Russia
[8] UMR 5254 CNRS UPPA, Inst Sci Analyt & Phys Chim Environm Mat, Pau, France
基金
俄罗斯基础研究基金会; 欧洲研究理事会;
关键词
POLYMER BRUSH; GRAFTED POLYELECTROLYTES; PROJECTION DOMAINS; NF-M; NEUROFILAMENTS; CHAINS; LAYER; COPOLYMERS; NETWORKS; BEHAVIOR;
D O I
10.1039/c8sm01138a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two complementary self-consistent field theoretical approaches are used to analyze the equilibrium structure of binary and ternary brushes of polyions with different degrees of polymerization. Stratification in binary brushes is predicted: the shorter chains are entirely embedded in the proximal sublayer depleted of end-points of longer chains while the peripheral sublayer contains exclusively terminal segments of longer chains. The boundary between sublayers is enriched with counterions that neutralize the residual charge of the proximal sublayer. These analytical predictions for binary brushes are confirmed and extended to ternary brushes using the numerical Scheutjens-Fleer approach.
引用
收藏
页码:6230 / 6242
页数:13
相关论文
共 50 条
  • [21] Response of bi-disperse polyelectrolyte brushes to external electric fields — A numerical self-consistent field theory study
    Cong Kang
    Shuang-liang Zhao
    Chao-hui Tong
    Chinese Journal of Polymer Science, 2017, 35 : 98 - 107
  • [22] Response of bi-disperse polyelectrolyte brushes to external electric fields - A numerical self-consistent field theory study
    Kang, Cong
    Zhao, Shuang-liang
    Tong, Chao-hui
    CHINESE JOURNAL OF POLYMER SCIENCE, 2017, 35 (01) : 98 - 107
  • [23] MONTE-CARLO - SELF-CONSISTENT FIELD METHOD IN THE POLYELECTROLYTE THEORY
    VORONTSOVVELYAMINOV, PN
    LYUBARTSEV, AP
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 1989, 7 (03): : 739 - 747
  • [24] Elastic properties of graft copolymers in the lamellar phase studied by self-consistent field theory
    Zhang, Liangshun
    Lin, Jiaping
    Lin, Shaoliang
    SOFT MATTER, 2009, 5 (01) : 173 - 181
  • [25] Responsive Behaviors of Diblock Polyampholyte Brushes within Self-Consistent Field Theory
    Qu, Li-Jian
    Man, Xingkun
    Han, Charles C.
    Qiu, Dong
    Yan, Dadong
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (02): : 743 - 750
  • [26] Compression of Polymer Brushes: Quantitative Comparison of Self-Consistent Field Theory with Experiment
    Kim, Jaeup U.
    Matsen, Mark W.
    MACROMOLECULES, 2009, 42 (09) : 3430 - 3432
  • [27] Self-consistent field theory of brushes of neutral water-soluble polymers
    Baulin, VA
    Zhulina, EB
    Halperin, A
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (20): : 10977 - 10988
  • [28] SELF-CONSISTENT FIELD THEORY FOR ELECTRONIC STRUCTURE OF POLYMERS
    ANDRE, JM
    JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (04): : 1536 - &
  • [29] Conformational properties of polyelectrolyte brushes: A Monte Carlo and self-consistent-field study
    Chen, H
    Zajac, R
    Chakrabarti, A
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (04): : 1579 - 1588
  • [30] On the mechanism of uptake of globular proteins by polyelectrolyte brushes: A two-gradient self-consistent field analysis
    Leermakers, F. A. M.
    Ballauff, M.
    Borisov, O. V.
    LANGMUIR, 2007, 23 (07) : 3937 - 3946